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Abstract

This paper digs into the relationship between cages and grasps of a rigid body. In particular,
it considers the use of cages as waypoints to grasp an object. We introduce the concept
of pregrasping cages, caging configurations from which an object can be grasped without
first breaking the cage. For two-fingered manipulators, all cages are pregrasping cages and,
consequently, useful waypoints to grasp an object. A contribution of this paper is to show
that the same does not hold for more than two fingers. A second contribution is to show
how to overcome that limitation.

We explore the natural generalization of the well understood squeezing/stretching char-
acterization of two-finger cages to arbitrary workspace dimension, arbitrary object shapes
without holes, and arbitrary number of point fingers, and exploit it to give sufficient condi-
tions for a cage to be a pregrasping cage. As a product of that generalization, we introduce
grasping functions: Scalar functions defined on the finger formation that control the process
of going from a cage to a grasp. We finish the paper by establishing an analogy between the
role of grasping functions in grasping and that of Lyapunov functions in stability theory.

1 Introduction

To cage an object is to bound its mobility. From the object’s point of view, the manipulator
constitutes a set of constraints in the object’s configuration space that prevents it from escaping
arbitrarily far.

In contrast to the prehensile approach to manipulation, caging provides a way to control
an object without immobilizing it. If the manipulator moves as a rigid body, a cage on the
object is enough to guarantee that the object will “follow”. Non-prehensile manipulation is
the most widely referenced application of caging [16, 6, 26].

Caging is also interesting for a second reason: When an immobilizing grasp is required, or
preferred, a cage might constitute a useful waypoint to a grasp. In some cases, the grasping
problem becomes trivial once the caging problem is solved. It is on this less referenced ap-
plication of caging—the relationship between grasping and caging configurations—that we set
the focus of this paper.
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The most studied case is that of two-fingered manipulators. Vahedi and van der Stap-
pen [29] introduced the squeezing and stretching conditions for two-finger cages of polygons
in the plane. An object is squeezing caged if it remains caged when the fingers are given the
freedom of moving closer together, Figure 1la. Conversely, it is stretching caged if it remains
caged when the fingers are given the freedom of moving apart, Figure 1b.

(a) (b) (c)
Figure 1: Examples of (a) squeezing cage, (b) stretching cage, (c) both.

The squeezing/stretching conditions, first introduced as algorithmic constructions for the
problem of finding cages, have enabled a deep understanding of the configuration space of
two-fingered manipulators: All two-finger cages are either squeezing caging, stretching caging,
or both.

This characterization gives rise to a fundamental relationship between cages and grasps.
Given a cage of an object, there is always an infallible blind strategy to grasp it: either close or
open the fingers, depending on whether the cage is a squeezing or a stretching cage, Figure 2.
If we plan to grasp the object beginning from a cage, there is no need for accurate finger
positioning or feedback for error control. The squeezing/stretching conditions guarantee that
the object will not escape while the manipulator closes/opens the fingers. In this paper we
refer to any cage with such a grasping strategy as a pregrasping cage.
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Figure 2: Pregrasping cages: (a) infallible grasp from a squeezing cage, (b) infallible grasp
from a stretching cage.

Does that characterization generalize to cases other than two-finger cages of polygonal
objects in the plane? Can we always infallibly grasp an object beginning from a cage? The
answer to the first question is yes. In this paper, we generalize the squeezing/stretching
characterization to arbitrary object shapes without holes, arbitrary workspace dimension, and



arbitrary number of fingers. Unfortunately, the answer to the second question is no. We show
in this paper that not every cage is an adequate waypoint to grasp an object, that is, not all
cages are pregrasping cages. However, the construction of the proposed generalization builds
enough machinery to overcome that limitation and gives sufficient conditions for a cage to be
a pregrasping cage.

Section 2 describes previous work on caging and its relation to grasping. In Section 3 we
give precise definitions for all concepts related to configuration space, caging, and grasping
used in the paper. We discuss in Section 4 the relationship between caging and grasping
and generalize the concepts of squeezing and stretching caging to arbitrary number of fingers.
For that generalization we introduce grasping functions, scalar functions F' that control the
finger formation, resulting in the concepts of F-cage, F-squeezing cage and F-stretching cage.
A grasping function plays the open/close role that the finger-to-finger distance plays in the
two-finger case.

We use grasping functions in Section 5 to prove the generalization of the squeezing/stretching
characterization and explore its implications for the existence of pregrasping cages. We further
show that the general formulation, when the chosen caging function is the distance between
two fingers, is equivalent to the prior formulation of the two finger case in the literature. The
proposed generalization with grasping functions yields two main consequences:

i. If the manipulator forms a pregrasping cage on the object with a grasping function F|,
the object remains caged for as long as the manipulator maintains the value of F.

ii. There is always a path from the pregrasping cage to a grasp of the object that never
breaks the cage. When the function F' is convex (or concave), the process to go from the
cage to a grasp is controlled by the value of the function F. We refer to the type of grasp
where the grasping process ends as a grasping cage, described in detail in Section 3.

Section 6 shows three examples of such grasping functions with associated pregrasping
cages. We finish in Section 7 with a review of the implications of the presented results and
an analogy between the role played by grasping functions in grasping and that of Lyapunov
functions in stability analysis.

2 Related Work

Interest in caging an object appears in the literature as early as 1957 with with Besicovitch’s
analysis of trapping a sphere with a net or a cage [3, 4]. However, it is not until 1990 when
Kuperberg [12] poses a formal definition for the caging problem:

“Let P be a polygon in the plane, and let C' be a set of n points in the complement
of the interior of P. The points capture P if P cannot be moved arbitrarily far
from its original position without at least one point of C' penetrating the interior
of P. Design an algorithm for finding a set of capturing points for P.”

Since then, the caging condition has been studied from different perspectives and applied to
a number of manipulation problems such as grasping [8, 27, 28, 11], part feeding [6] , and
non-prehensile manipulation [16, 10, 9].

Relevant to our work are the concepts of squeezing and stretching caging proposed in recent
algorithmic approaches to the two-finger caging problem [17, 18, 29]. Squeezing and stretching



caging are stricter conditions than caging that expect the object’s mobility to be bounded even
when the shape of the manipulator is allowed some partial freedom.

Rimon and Blake [20] were the first to implicitly study squeezing cages. They were in-
terested in determining the caging set of a grasp: the maximal connected set of caging con-
figurations containing a given immobilization of the object. They showed for hands with
one-dimensional configuration spaces that the aperture of the hand at which the cage breaks
always corresponds to a frictionless equilibrium grasp, and used that characterization to develop
caging algorithms for two-fingered gripping systems. Although they only explicitly considered
external or squeezing grasps, they already looked into the connection between immobilizations
of the object and caging configurations. Davidson and Blake [7] later extended the technique
to the three-fingered case.

Pipattanasomporn and Sudsang’s works on caging non-convex polygons [17] and poly-
topes [18] with two fingers has a similar goal to Rimon and Blake’s but with an algorithmic
rather than topological approach. They studied the closely related problem of finding maximal
two-finger cages on concavities of planar polygons. They introduced the concepts of equivalent
squeezed and stretched finger trajectories that allowed them to describe equivalences between
paths in the free space of the manipulator and transform the caging problem into a graph
search problem in a finite discrete space.

The concepts of squeezing and stretching caging were formally developed by Vahedi and
van der Stappen [29] as an algorithmic technique to find all two-finger caging placements of
planar polygons. They showed that, in that case, squeezing and stretching cages account for
all possible cages, and used that characterization to develop the first complete algorithm to
report them. Rodriguez and Mason [23] extended the two-finger characterization of squeezing
and stretching cages to all compact, connected and contractible object shapes in arbitrary
workspace dimension.

Following Vahedi and van der Stappen, in this paper we extend the concepts of squeezing
and stretching caging to manipulators with more than two fingers, for what we define the
concept of grasping functions. Closely related is the work of Pipattanasomporn, Vongmasa
and Sudsang [19] on caging polytopes via finger dispersion control. They proposed to cage
polytopes by maintaining a scalar function defined on the finger formation over a critical
value. Our work with grasping functions can be seen as a formalization and extension of the
same idea to a more general set of objects. We present it here as the natural generalization of
the two-finger squeezing/stretching characterization of cages to the n-finger case.

There is considerably less previous work studying caging with an arbitrary number of
fingers. Some examples are the works by Pereira, Campos and Kumar [16] on conservative
decentralized control strategies to maintain caging in multi-robot formations for manipulation
of planar objects, and that by Fink, Hsie and Kumar [10] who developed decentralized feedback
controllers for collaborative transportation of objects in planar environments with obstacles.

The main idea in this paper is that certain caging configurations can be used as waypoints
to reliably grasp an object. The closest work in the literature is that of error-tolerant grasping
techniques for two-fingered manipulators developed by Davidson and Blake [8] and Gopalakr-
ishnan and Goldberg [11]. Both use, in some way or another, the notion of caging to robustify
the grasping process.



3 Terminology

In this section, we introduce concepts and definitions related to configuration space, paths,
caging, and grasping.

3.1 Configuration Space

Let the manipulator be a set of point fingers p;...p, in a workspace YW homeomorphic to
RY, and let M = W),, X ... x W,, homeomorphic to (Rd)n be the configuration space of the
manipulator.

Let O C W be the object to manipulate, which we will assume to have no holes. Formally,
we assume there is an homeomorphism H : R* — W mapping a d-dimensional euclidean closed
ball in R? to the object. We will refer to such an object as a standard topological ball. Notice
that the condition is a bit stronger than being homeomorphic to a euclidean closed ball, since
the homeomorphism is defined in the entire space. In particular, the exterior of the object is
also homeomorphic to the exterior of a ball. This will avoid degeneracies when considering
paths in the exterior of the object.

We note by OM = {(p;...p,) € M | 3 p; € O} the obstacle induced by O in the
configuration space of the manipulator. Following the convention in [12, 16, 21, 23, 29] the
free workspace of each point finger p; is defined as Wffee = W,, \ int [O], the complement of
the interior of @, and equivalently the free space of the manipulator as M/ = M \ int [(’)M].

3.2 Paths in the Configuration Space

A path of the manipulator in the free space is a parametrized curve « : [0,1] — M/, We
say the path is contractible in M/ if it is closed (a(0) = «(1)) and homotopic to a point
c € MJ that is, the path can be retracted to a point without leaving the free space. The
contraction can be written as a homotopy of paths:

H(t,s): 0,1] x [0,1] — M (1)

with H(t,0) = a(t) and H(t,1) = ¢, where ¢ is the path parameter and s is the contraction
parameter.
We define the natural projection operator :

II; M — Wpi
(p1-..Pn) — i

(2)

that projects a configuration of the manipulator ¢ = (p; ...p,) onto the i-th point p;. The
following proposition characterizes the contractibility of paths in M/ in terms of the con-
tractibility of the projected paths described by each finger in the corresponding free workspace.

Proposition 1 (Characterization of contractible paths). A path o in M/™¢ is contractible if

free
i

and only if for each i, I1; () is contractible in W,

The proof is in Appendix A. Proposition 1 provides a constructive method to build con-
tractible curves in M/¢ by looking at the paths described by each individual point finger.



3.3 Caging

A cage is a configuration ¢ of the manipulator that bounds the mobility of the object. In
Kuperberg’s original formulation of the caging problem [12], point fingers p; ...p, are inter-
preted as obstacles in the configuration space of the object, which are meant to bound the
set of the object’s free paths. In this paper, as it has been the rule in the literature on
caging [21, 19, 29, 23, 25|, we use the equivalent and more convenient definition in terms of
the mobility of the manipulator.

Given a configuration of the manipulator ¢ € M, let M, be the set of all configurations
obtained by rigid transformations from c, i.e., the set of configurations reachable by the ma-
nipulator while moving as a rigid body. We refer to a path in M, as a rigid path.

We define a cage, or a caging configuration, as:

Definition 1 (Cage). A cage is a configuration ¢ of the manipulator that lies in a compact
connected component of MmN M,.

When the manipulator cages the object, all rigid paths of the manipulator are bounded
in M/ When the manipulator does not cage the object there is an rigid escaping path in
MFee A\ M., that brings the manipulator arbitrarily far from O.

The concepts of squeezing cages and stretching cages for two fingered manipulators are
defined in a similar fashion. Let D : M — R be the distance between the two fingers. M, is
the level set induced by the initial distance between the fingers:

M. = {qge M|D(q) = D(c)} (3)
Let M7 and M be the regions in the free space “above” and “below” M.,:

ME = {q€ M|D(q) = D(c)} (4)
M. = {ge M|D(q) < D(c)} (5)

Analogous to Definition 1 we define squeezing/stretching caging configurations as:

Definition 2 (Squeezing Cage). A squeezing cage is a configuration ¢ of the manipulator that
lies in a compact connected component of M N M.

Definition 3 (Stretching Cage). A stretching cage is a configuration ¢ of the manipulator that
lies in a compact connected component of Mfee N M,

In a squeezing/stretching cage, the manipulator cannot escape arbitrarily far from the
object, even when given the freedom to decrease/increase the distance between the fingers.

3.4 Grasping

One of the goals of this paper is to characterize, among the set of all cages, those that are
useful waypoints to lead the way into a grasp of an object. Before describing more formally
the notions of “useful waypoint” and “leading the way into a grasp”, we detail first what we
mean by grasp.

Let ¢ € M€ be a configuration of the manipulator in contact with the object ©. We think
here of the free configuration space of the object as equivalent to the subspace of admissible



rigid transformations of the manipulator M. N M/, Asada and By [1] and Bicchi [5] define
the free subset of object motions, Ugm, as the subset of velocities of the object in the tangent
space T'M.|. that do not imply any contact violation. They define a configuration to be
accessible and detachable as:

Definition 4 (Accessible and Detachable). A configuration of the manipulator ¢ is accessible
and detachable if U™ # () and strongly accessible and detachable if int[UZ™] % (.

In the context of accessibility and detachability, complete object immobilization or form
closure is defined as:

Definition 5 (Form Closure). A form closure grasp is a configuration of the manipulator
¢ € MJ™ that is not accessible and detachable, i.e., UZ”* = 0.

When the manipulator holds a form closure grasp, the manipulator lies in an isolated
configuration in the free configuration space, M. N M = {c}, see example in Figure 3a.
There is no path of the object that does not result in penetration of one of the finger constraints.
Form closure is a strong condition, unattainable for certain objects with symmetries, and not
always useful from a practical point of view. Similarly, we define the weaker condition weak
form closure as::

Definition 6 (Weak Form Closure). A weak form closure grasp is a configuration of the
free

manipulator ¢ that is not strongly accessible and detachable, i.e., int[UZ"] = 0.

As illustrated in Figure 3b, a weak form closure grasp does not prevent all escaping paths
of the object. However all of them imply contact with the object locally at ¢. Rimon and
Burdick [22] refer to those paths as 1st-order roll-slide motions.

In the context of this paper, we introduce a stronger type of grasp, a condition that, from a
local perspective, is equivalent to weak form closure, but at the same time voids all macroscopic
escaping paths that detach the object from the manipulator. We refer to it as grasping cage,
because it is the type of grasp that we will reach when closing into the object beginning from
a cage:

Definition 7 (Grasping Cage). A grasping cage is a configuration of the manipulator ¢ € M7
such that neither ¢ nor any other configuration ¢ reachable from ¢ are not strongly accessible
and detachable, i.c., int[UF*] = () for all ¢ € M1 M.

Notice that, by definition, a grasping cage is always a cage. Notice also that a grasping
cage is not necessarily a full immobilization of the object, but is stronger than other grasp
conditions in the literature such as equilibrium grasp [22] or partial form closure [5]. Figure 3¢
shows an example.

4 From caging to grasping

In this section we put forward the idea that not all cages are equally suited to grasp an object,
and introduce the tools to overcome that limitation.



(a) (b) ()

Figure 3: Different grasp types: (a) Form closure grasp, full immobilization of an object. (b)
Weak form closure grasp. The object is accessible and detachable, but not strongly accessible
and detachable. The object can escape with a roll-slide motion. (c¢) Grasping cage. The object
has some freedom, but there is no free path that detaches the object from the manipulator.

4.1 Pregrasping Cages

The first step is to state what it means for a cage to be “suited” to grasp an object. In that
sense, a key concept in this paper is that of a pregrasping cage:

Definition 8 (Pregrasping Cage). A pregrasping cage is a cage of the manipulator for which
there is a caged path to a grasping cage of the object.

Pregrasping cages are configurations of the manipulator from which the object can be
grasped without ever breaking the cage. There is a grasping strategy that yields absolute
certainty that the object cannot escape the manipulator. Figure 4 shows a simple example of
a pregrasping cage with two fingers. Beginning from a caging configuration, the manipulator
closes the point fingers to reach a grasping cage without losing the cage on the object.

(a)

Figure 4: (a) Pregrasping cage of a planar polygon with two fingers. (b) While moving
the fingers closer together, the manipulator never breaks the cage on the object, and the
pregrasping cage turns into a grasping cage.

Thanks to Vahedi and van der Stappen’s characterization of two-finger cages [29] we know
that all two-finger cages of polygonal objects in the plane are pregrasping cages. Because
all two-finger cages of a planar polygon are either squeezing or stretching, it is inevitable
that by closing (in the case of squeezing) or opening (in the case of stretching) the fingers,
the manipulator will eventually grasp the object. The property, extended by Rodriguez and
Mason [23] to two-finger cages of compact connected and contractible objects in arbitrary



dimension, is described in Section 5.3 as a corollary to the more general formulation provided
in this paper.

The same idea can be extended to grasping with multi-fingered manipulators. Figure 5
shows an example where a set of three fingers closes to infallibly grasp an object. The manip-
ulator cages the object throughout the grasp process.

<< 0

Figure 5: (a) Multi-finger pregrasping cage. (b) The object remains caged through the process
of bringing the fingers together.

Note, however, that there is a key difference between two- and multi-finger cages. Unlike
in the case of two fingers, for multi-fingered manipulators not all cages are pregrasping cages.
Figure 6 shows a cage that cannot be extended to a grasp without breaking loose of the cage.
The triad of points in Figure 6a forms an interior cage on the object. However, when the
fingers open, they reach configurations as in Figure 6b where a slightly larger triad of points
no longer forms a cage. In this paper, we develop the necessary machinery to filter out those
situations.

4.2 [F-Caging

We are interested in identifying multi-finger pregrasping cages and characterizing their associ-
ated grasping strategies, the same way that squeezing and stretching motions characterize the
relationship between cages and grasps of two-fingered manipulators.

The conditions of cage, squeezing cage and stretching cage for the case of two fingers, as
introduced in Section 3.3, are defined by the topology of the spaces M. N M/ M- N MIree
and MiﬁMfr@e respectively. These, in turn, are based on the function D, the distance between
the fingers. D is a scalar function invariant with respect to rigid transformations. To generalize
to the multi-finger case, analogously, we consider functions invariant to rigid transformations
of the manipulator, which we will refer to as shape functions:

Definition 9 (Shape Function). A shape function is a semialgebraic scalar function F' : M —
R invariant with respect to rigid transformations of the manipulator.

An algebraic function y(x) is a function that satisfies a polynomial equation f(y) =
Zf\i 0 ¢i(7) - (y)" whose coefficients are themselves polynomials with rational coefficients ¢;(z) =
Z;-V:io ;- (z)?. A semialgebraic function is a function defined by a finite sequence of algebraic
equations and algebraic inequalities. For example, this allow us in Section 6 to use the opera-
tors max[-] and min]-] as part of the definition of F'.
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Figure 6: (a) Example of a cage with three fingers that is not a pregrasping cage. As soon as
the fingers stretch to reach a grasp they get to configurations such as (b) where the object is
no longer trapped. (c) Step by step detail of an escaping path showing that the object is not
trapped in (b).

The purpose of the semialgebraicity assumption is to avoid degeneracies in the level sets
of I’ and simplify the derivation of the proofs in the paper, but we do not mean to imply its
necessity. From a practical perspective, however, this does not impose any hard constraint,
since algebraic functions are dense in the space of continuous functions [2], which means that
we can always approximate as close as we want any continuous non-algebraic function by an
algebraic one.

With the use of shape functions, and analogous to the definitions of cage, squeezing cage
and stretching cage in the case of two fingers, we introduce here the concepts of F-cage, F-
squeezing cage and F-stretching cage. For that, we replace the distance between the fingers D
by a generic shape function F'. As in the case of two fingers, we consider the level sets of F:

M, ={ce M|F(c) = k} (6)
Given a shape function F', we define an F'-cage as:

Definition 10 (F-Cage). An F-cage is a configuration ¢ of the manipulator that lies in a

10



compact connected component of M/ N My, with k = F(c).

The manipulator is F-caged if it cannot escape when having the freedom to move while
I remains constant. As a result, F-cagedness implies the non-existence of escaping paths in
M N Miree,

Notice that for the case of two fingers, the definition of F-cage is equivalent to the definition
of a cage when F' = D, with the implication that all two-finger cages are F-cages for one very
specific shape function. On the other hand, when n > 2, the definition of F-cage is stricter
than that of a cage. If n > 2 My is larger than M,.. Consequently, more free paths need to
be bounded for ¢ to be F-caged than to be caged.

We introduce now the concepts of F-squeezing cage and F-stretching cage. Given a con-
figuration of the manipulator ¢, let /\/l,cJr and M be the sets “above” and “below” My:

M ={ce M|F(c) > k} (7)
M;, = {ce MIF(¢) < k) (8)

Then we define:

Definition 11 (F-Squeezing Cage). An F-squeezing cage is a configuration ¢ of the manipu-
lator that lies in a compact connected component of M/ N M, , with k = F(c).

Definition 12 (F-Stretching Cage). An F-stretching cage is a configuration ¢ of the manip-
ulator that lies in a compact connected component of M/ N M, with k = F(c).

The manipulator is in an F-squeezing (F-stretching) caging configuration if and only if it
cannot escape when given the freedom to move maintaining the value of F' below (above) its
initial value F'(c). Notice again that for the case of a two-fingered manipulator, the definitions
of F-squeezing cage and F-stretching cage are equivalent to the definitions of squeezing and
stretching cages when F' = D.

The same way that squeezing and stretching cages characterize the set of all cages of a
two-fingered manipulator, we will show in Section 5 that we can characterize the set of all
F-cages of an object in terms of F-squeezing and F-stretching cages.

4.3 Grasping Functions

Function D has a key property that enables the relationship between two-finger cages and
grasps: For large enough and small enough values of D, the manipulator cannot cage the
object. If the distance between the fingers is larger than the diameter of the object, the object
can always escape. If the distance becomes zero, both point fingers are coincident, which
cannot cage an object without holes.

When beginning from a squeezing or stretching caging configuration, those bounds limit
the squeezing and stretching motions, which will inevitably end in a grasp. We mimic the
same behavior in multi-fingered manipulators by imposing an equivalent bounding condition
to general shape functions F. We name the resulting functions grasping functions:

Definition 13 (Grasping Function). A grasping function is a shape function F such that
F~'([~o00,m]) and F~!([M,0]) are non-empty subsets of the non-F-caging region of the
configuration space for some m < M.
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If F' is a grasping function, the value of F' at all F-cages is bounded in between m and M.
In Section 6 we show three examples of grasping functions with corresponding grasping cages.

We see in Section 5 that, if F' is a grasping function, all cages constructed as F-cages are
pregrasping cages, and that F' controls the process to go from the cage to a grasp. Constructing
cages as [-cages for certain grasping functions effectively filters out the ones that are not good
waypoints to grasp an object, such as the counterexample in in Figure 6. A consequence of
that construction is that there is no grasping function F' under which that counterexample is
an F'-cage.

5 The Characterization of F'-Squeezing and F-Stretching Cages

We begin in Section 5.1 generalizing theorem by Vahedi and van der Stappe [29] from two-finger
cages of polygons in the plane to arbitrary object shapes without holes, arbitrary workspace
dimension, and arbitrary number of point fingers. In Section 5.2 we analyze its implications
for the existence of pregrasping cages, and finally we give in Section 5.3 a brief description of
the specialization of the general theorem to the case of two fingers.

5.1 The F-Squeezing and F-Stretching Theorem

Given a shape function F', the following theorem characterizes the set of all F-cages in terms
of F-squeezing and F-stretching cages.

Theorem 1 (F-Squeezing/F-Stretching Caging). Let F' be a shape function. Then, given an
F-cage of a standard topological ball in R® it is either an F-squeezing cage, an F-stretching
cage or both.

The detailed proof is in Appendix B. Although the details are long, the idea, illustrated
in Figure 7, is simple. The proof follows the contrapositive: Suppose that a configuration ¢ of
the manipulator is neither an F-squeezing cage nor an F-stretching cage. By definition, there
are F-squeezing and F-stretching escaping paths a~ C M, and a® C ./\/lﬁ, with £ = F(c),
going from ¢ to non-caging configurations ¢™ and ¢~ arbitrarily far from ¢, Figure 7a.

The key idea is to join the ends of those escaping paths in such a way that the resulting
closed curve f is contractible in M/ and all its crossings through My, other than ¢, are
non-F-caging configurations. We make use of the characterization of contractible paths in
Proposition 1 to complete § by specifying the path of each point finger independently.

As illustrated in Figure 7b, once [ is constructed, the intersection of its contraction with
M,, yields a path o inside Mj, N M/ connecting ¢ to a non-caging configuration ¢y. This
establishes the non-cagedness of ¢ which contradicts the hypotheses and proves the theorem.
From a topological point of view, we can understand the constructed escape path ag as an
“average” of the F-squeezing and F-stretching escaping paths.

5.2 Implications

Theorem 1 says that for any arbitrary combination of shape function F' and sufficiently well
behaved object, we can decompose the set of F-cages as the union of all F-squeezing and
F-stretching cages. This result is analogous to the two-finger counterpart described in the
introduction, when F' is the distance between the fingers.
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Figure 7: Diagram of the proof of Theorem 1. (a) Escaping paths at and a~ follow from the
assumption that c is neither squeezing nor stretching caging. We join their ends ¢t and ¢~
in such a way that: The concatenation with o™ and o~ gives a closed path contractible in
MTree; and ¢, the intersection with Mj, is a non-caging configuration. (b) The intersection
of the contraction of the closed path § with M} gives the escaping path ag that connects ¢ to
a non-caging configuration.

In the two-finger case, the division of cages as squeezing or stretching cages has an important
implication for the relationship between cages and grasps: The freedom of an object in a two-
finger cage can always be removed by following a squeezing or a stretching path, that is, all
two-finger cages are pregrasping cages. Corollary 1 generalizes the same implication to the
case of n fingers and arbitrary grasping function.

Before diving into the details of the generalization, we introduce the concept of limit con-
figuration of a function F': M — R, used in the proof of Corollary 1:

Definition 14 (Limit Configuration). A limit configuration of F' is a configuration of the
manipulator ¢, with F'(¢) = k, for which there is an € > 0 such that the connected component
of F7Y([k — €,k + €]) containing ¢ is not empty and is equal to the same connected component
of either FY([k,k +¢€]) or F~1([k — ¢, k]).

That is, restricted to the connected component containing ¢, the preimage of F lies entirely
to one side of the level set F~1(k).
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Corollary 1 stablishes the desired relationship between F-cages and pregrasping cages:

Corollary 1. Let F be a grasping function. Then, all F-cages of a standard topological ball
in R® are pregrasping cages.

Proof. Let ¢ be an F-cage of the object with k = F'(¢). By hypothesis, as illustrated in Figure 8,
there are values m and M, with m < k < M, such that F~!((—oo,m]) and F~([M, c0)) are
non-empty sets containing only non-F'-cages.

00
............. j B AYAYATAR |
Jd - L
non-F-caging d c non- F-caging

Figure 8: Representation of the value of F' in the real line R. Because F' is a grasping function
there are M and m upper and lower bounds of F, such that F~1((co,m]) and F~([M,o0))
are all non-F-cages. We assume the initial configuration of the manipulator, ¢, to be an F-
squeezing cage with F(c¢) = k. By definition, the manipulator remains F-caged even when
the value of F' decreases. This implies that all paths that decrease the value of F' must be
bounded.

Since grasping functions are by definition shape functions, it follows from Theorem 1 that
c must be either an F-squeezing of F'-stretching cage. Without loss of generality, we assume ¢
to be an F-squeezing cage (the derivation for the F-stretching case is analogous). The initial
configuration of the manipulator is an F'-cage, hence it lies in a compact connected component
C of M/ M, . We note by F¢ the restriction of F' to C. Notice that C can be decomposed
into the union of its level sets:

k
c=J {FF'w}= | Mnminc

t=—00 t=—00

We will show that there is always at least one grasping cage inside C.

Consider now the limit configurations of ' and F¢ as potential candidates to be grasping
cages. The limit configurations of F' are configurations of the manipulator where F' becomes
stationary. In the process of constraining F' from M to C other limit configurations appear,
due to the interaction between object and manipulator. We are interested in the limit config-
urations of F¢ that are not due to stationarity of F. Notice that there always must be limit
configurations of this kind. The value of F' at C would not be bounded by m otherwise, given
that by hypothesis F~! (—oo, m] # 0.

Consider now ¢ € C, one of those limit configurations of F¢, and let ¥’ = F(¢/). By
definition, there is € > 0 such that the connected component where ¢ lies in Fj; ' ([k' —¢, k' +¢])
is equal to that of Fj,'([k' + ¢,¢]). This implies that the level sets M/ N M, restricted to
C, are empty for ¥’ —e <t < k' and not empty for ¥’ < t < k' + €. Since F is semialgebraic,
it is regular enough that the restriction to C of the level set t = k’ at the limit configuration
Miree M,;,l must have empty interior when considered as a subset of My, so that it can
transition to empty when ¢ becomes smaller than &’.

Let now M, be the set of configurations reachable from ¢’ through rigid transformations
of the manipulator. We shall see that M/ N M, also has empty interior as a subset of M.
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Notice that if that were to be the case, and given that the manipulator has never stoped caging
the object, the limit configuration would be a grasping cage. Suppose otherwise that there is
a path in M/ N M, that detaches the manipulator from the object. Because F is a shape
function, we know that Mo C Mjs. Therefore, the same path that detaches manipulator from
object in M also detaches the manipulator in M/, which contradicts the fact that the interior
of Mf¢ 1 My is empty. O

If ¢ is an F-cage, Corollary 1 shows that there is always a path inside either M/ N M,
(F-squeezing cage) or M/ M| (F-stretching cage) that begins at ¢ and ends in a grasping
cage.

In the general case, and without making any extra assumptions on F', the process to go
from ¢ to the grasping cage can be arbitrarily complicated. Limit configurations of F' difficult
the process of ”descending” (F-squeezing) or ”ascending” (F-stretching) into the grasp, since
they manifest as local extremum to the grasp process. The next corollary notes that the process
becomes trivial when F' does not have limit configurations.

Corollary 2. Let F be a grasping function, and ¢ an F-squeezing (F-stretching) cage of a
standard topological ball. Note by C the compact connected component of MiTe AM; (MIreen
M;) where ¢ lies. If F' has no limit configurations in C, all squeezing (stretching) paths of the
manipulator end in a grasping cage.

Proof. The proof follows from the construction in the proof of Corollary 1. Since F' has no
limit configurations, all limit configurations of F must be grasping cages. O

Consequence of Corollary 1, if F' does not have limit configurations, we can look at F' as
a potential function whose gradient leads the cage to a grasp. If beginning from an F-cage,
the process of increasing/decreasing the value of F' allows one to blindly grasp the object,
assuming we know first whether the cage is either F-squeezing or F-stretching. The following
corollary, shows that the conditions on Corollary 1 are met, it F' is convex or strictly concave.

Corollary 3. Let F be a convex (concave) grasping function, and ¢ an F-squeezing (F-
stretching) cage of a standard topological ball. Then, all squeezing (stretching) paths of the
manipulator end in a grasping cage.

Proof. The proof follows from Corollary 2. If F' is convex, it only has one local minimum. By
hypothesis, there is m such that F'~!((—o0,m]) is non-empty and non-F-caging. Consequently
the unique local minimum of F must be outside C, the compact connected component of
Mree M, where c lies. The derivation for the case of F' concave is analogous. O

5.3 The Two-Finger Case

We see now that the squeezing/stretching characterization of two-finger cages follows directly
from the more general Theorem 1.

Theorem 2 (Squeezing/Stretching Caging). Given a two-finger cage of a standard topological
ball in RY, it is either a squeezing cage, a stretching cage or both.

Proof. Let F be D, the distance between the two fingers. D is an algebraic function invariant
with respect to rigid transformations, hence a shape function. Consequently, the definitions
of F-caging, F-stretching caging and F-squeezing caging are equivalent to that of caging,
squeezing caging and stretching caging, and the theorem follows directly. O
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From Theorem 2 and Corollary 1 it follows that all two-finger cages are actually pregrasping
cages:

Corollary 4. All two-finger cages are pregrasping cages.

Proof. We only need to check that D is a grasping function and the corollary will follow directly
from Corollary 1.

When D = 0 both point fingers coincide and, since the object has no holes, the object
cannot be trapped. We choose then m = 0. Since the object is a standard topological ball,
it must be compact and we can always find a ball that contains it. We define M to be the
diameter of such a containing ball. When the distance between the fingers is larger than M,
the object will always be able to escape arbitrarily far. O

Provided that D is convex, Corollary 3 implies that squeezing and stretching motions will
inevitably lead a cage into a grasp. When the fingers cannot close any more (for the case of
a squeezing cage) or open any more (for the case of a stretching cage), both point fingers will
be in contact with the object and will form a a grasping cage.

Corollary 4 reflects the asymmetry between the two- and multi-finger cases. While all
two-finger cages are suitable starting points to grasp an object, not all multi-finger cages are.
All two-finger cages are F-cages with respect to the grasping function D. This turns them
automatically into pregrasping cages. In the general case, though, the definition of F-cage is
stricter than that of a cage.

6 Examples of Grasping Functions

In this section we show three examples of grasping functions F' and associated F-squeezing/F'-
stretching cages.

For F' to be a grasping function, it must be a shape function, i.e., invariant with respect
to rigid transformations of the manipulator. In the following three examples F' is not directly
a function of the coordinates of the point fingers, but of the distances between them. This
makes F' automatically a shape function.

1 2
Fe:i.g d* (pi, pj) (9)
i,j€L..n
1#£]
Fraz = max d(?@'an) (10)
i,j€L..n
i#]
Fpin = min_d(pi,p;) (11)
1,7€1..n
i#£]
All three Fe, Fy,q; and F,;, are semialgebraic since they can be expressed in terms of sums,
multiplications and inequalities. We finally verify that they are grasping functions by finding

the upper and lower bounds on the value of F' for all F'-cages:
F, If F. = 0, all point fingers are coincident, thus, the manipulator neither cages the object

nor Fe-cages it, since the object is contractible and does not have holes. If F, is larger
than % times the squared diameter of the object, it does not Fe-cage it either, since
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the manipulator is allowed to move freely while maintaining the value of F, until the
distance between every pair of points is at least the diameter of the object.

Frae If Fluee = 0 all point fingers are coincident and the manipulator does not F,,.,-cage the
object. If F, 4, is larger than the diameter of the object, all distances between the point
fingers can grow freely up to the diameter while F,,,, maintains its value. Hence, the
object is not F,4,-caged either.

Frin If Fin = 0, all point fingers except two that coincide have complete freedom for Fi;,
to maintain its value. The object is not F,-caged then. If F;, is larger than the
diameter of the object, all distances between point fingers are larger than the diameter
of the object, thus, it is not Fj,;,-caged either.

The set of F-cages induced by a specific grasping function, and therefore the induced set
of pregrasping cages, depends on the selection of F'. Figure 9 shows examples of F-cages with
Fe, Frag, and Fpyp.

We call F, the energy of the finger formation because of the resemblance to the form of
the elastic energy that would be stored by springs connecting the point fingers. We maintain
an F.-cage over an object by controlling that energy level. Figure 9a shows an example of an
object that requires more than two fingers to be caged. If the initial value of F, is smaller
than a critical value (F, < 2d?), the configuration is an F,-squeezing cage. We descend from
the initial cage to a grasp of the object simply by decreasing the value of F.

Figure 9b shows an example of an F,4,-squeezing cage of a sphere with 4 fingers, as long as
at the initial configuration Fi, ., is smaller than the diameter of the sphere d.. We descend from
the cage to a grasping cage by decreasing the value of F},,,. The minimum value of F),,, when

we reach the grasp, corresponds to the side length of the inscribed regular tetrahedron \/gdc.
Notice that F,q, is not differentiable everywhere, which prevents us from directly following
the gradient to reach a grasp. However, we can use instead an appropriate subgradient and
still converge to the minimum of F,,;.

Figure 9c illustrates the use of F,;, in addressing the counterexample in Section 4.1. Be-
ginning from the configuration at the left in Figure 9c, all configurations with Fj,;, > d. are
Frin-stretching cages, and consequently pregrasping cages. From one of those configurations
we can blindly increase the value of F),;, to reach a grasp of the object.

Frez and F;, are well suited to be controlled in a decentralized manner. They resemble
the conservative decentralized strategies used by Pereira, Campos and Kumar [16] to cage an
object. They derive caging guarantees by keeping the distances between independent mobile
robots below a certain safety threshold. We can think about that metric as a grasping function
similar to F},q., with the only difference that they only keep track of distances between adjacent
robots in a circular formation.

Guaranteeing caging by keeping track of the values of F, and F},,; is also very similar to
the concepts of dispersion and concentration proposed by Pipattanasomporn, Vongmasa and
Sudsang [19] for caging rigid polytopes. They also consider only distances between adjacent
robots in a circular formation.
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(c)

Figure 9: Three examples of F-cages and associated grasping cages: (a) The manipulator is
in an Fe-squeezing cage if F, < 2d?. (b) The manipulator is in an F,.-squeezing cage if
Fraz < de. (¢) The manipulator is in an F),;,-stretching cage if F,, > d.. Setting that
threshold avoids the counterexample in Section 4.1.

7 Discussion

This papers begins from one key observation: that some cages are especially suited as waypoints
to grasp an object. We coin the term pregrasping cage to name those cages that yield a caged
path to a grasp of the object, and grasping cage to the type of grasp we expect to reach
at the end of that path. A grasping cage is not necessarily a full immobilization, but more
constraining than an equilibrium grasp or a partial form closure grasp.

We generalize the strategy used in two-fingered manipulators to characterize cages as
squeezing or stretching cages, to general object shapes, workspace dimension, and number
of point fingers. More formally, given a standard topological ball of arbitrary dimension and a
grasping function F', there is a set of configurations of the manipulator, referred to as F-cages,
for which:

i The object cannot escape the manipulator as long as the value of F' is maintained.
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ii There is a path to a grasping cage of the object that does not require breaking the cage.
If F' is not stationary in the relevant F-caging region of the configuration space, e.g., if F’
is convex or concave, the grasp process is blind and can be controlled by F. Knowledge
of the location of the object is not required to guarantee reaching a grasping cage.

This gives rise to the concepts of F-cage, F-squeezing cage, and F-stretching cage, con-
figurations of the manipulator that trap the object even when given the freedom to move
when maintaining, decreasing or increasing the value of F' correspondingly. These generalize
the concepts of cage, squeezing cage and stretching cage for the case of two fingers. In this
paper we show that all F-cages of a standard topological ball are either F-squeezing cages,
F-stretching cages, or both. A key consequence is that, if I is a grasping function, all F-cages
are pregrasping cages, and therefore are useful waypoints to grasp an object.

The following diagram summarizes the relationship between cages, pregrasping cages and
F'-cages.

F-cages C Pregrasping cages C Cages

The set of cages that ease the grasping problem is a proper subset of the set of all cages.
For any given choice of grasping function F', all F-cages are pregrasping cages. Given any
configuration ¢ of the manipulator, the existence of a grasping function under which c¢ is an
F'-cage, directly implies that c is a pregrasping cage. It is important to notice, though, that
with a specific choice of grasping function F', we only recover a portion of all pregrasping cages.
The question of whether the union of all F-cages induced by all possible choices of grasping
function covers the entire set of pregrasping cages remains open.

The results in this paper admit two interpretations: From a synthesis point of view, the
interest is in finding pregrasping cages of an object. Corollary 1 says that we can choose a
particular grasping function F' and constrain the search problem to that of finding F-cages. By
virtue of Theorem 1, this is equivalent to searching for F-squeezing and F-stretching cages. The
same strategy has been shown to be computational advantageous for the two-finger case [29].

From an analysis point of view, the interest is in deciding whether a particular cage is
a pregrasping cage or not. Corollary 1 tells us that we can prove a particular cage to be a
pregrasping cage by finding a grasping function F' under which is also an F-cage.

In that sense, we can understand the role played by grasping functions in grasping as
analogous to that played by Lyapunov functions in stability analysis. We prove that a cage
can be driven into a grasp the same way one proves that a system is stable: by finding an
appropriate scalar function that bounds the freedom of the system. If the manipulator is in a
pregrasping cage and we want to grasp the object, we can control the value of that bounding
function by leading the manipulator to an extremum of F', which we can call a grasp.

Acknowledgments

We wish to thank Jeff Trinkle, Ken Goldberg, Siddhartha Srinivasa, Ross Knepper and Tomas
Simon for discussions, comments and insights.

This work was supported by National Science Foundation [NSF-IIS-0916557], the Defense
Advanced Research Projects Agency [DARPA-BAA-10-28] and Army Research Laboratory
[W911NF-10-2-0016]. This work does not necessarily reflect the position or the policy of the
U.S. Government, DARPA or ARL. No official endorsement should be inferred.

19



A Contractible Paths

Proposition (Characterization of contractible paths). A path o in M is contractible if and
only if for each i, II; () is contractible in W}Zﬁe.

Proof. The proposition is direct consequence of M being constructed as the cartesian product
of the configuration spaces of each point finger, M =W, x ... x W, . We prove both direc-
tions of the implication:

[=] Suppose «a is contractible in M/, Let H(t,s) be the corresponding path homotopy.
The natural projections of « are the closed curves «; = II; (o) C Wf:ee. We need to show that
«; is contractible in W}ZW for all i. Consider then the natural projections of the homotopy
H(s,t):

Hy: [0,17 B e Do gy
(t,s) — H(t,s) — II;(H(t,s))

H; is the composition of continuous maps, therefore is continuous. H; is also a homotopy
of paths since:

H;(t,0) = 1L; (H(t,0))
1

£,0)) = T (a()) = ()
Hz‘(tv 1) =1II; (H(tv )) = 1L

IL;(c

We conclude that «; is contractible to II;(c) in W™

[«<] Suppose that each natural projection «; = II; («) is contractible in its corresponding
free workspace Wgee. Let H;(t,s), defined inside Wf:ee, be the corresponding path homotopy.
Consider now the combined path in M o = (aj...q,), which maps into M/ by con-
struction. Consider also the combined map H = (Hy(t,s)... Hy(t,s)), which by construction
maps into M/ We show now that H is an homotopy of paths for a:

H(t, O) = (al(t) cee an(t)) = a(t)
H{t,1) = (a1(0) . .. an(0)) = ¢

Which means that « is contractible to ¢ in M/, O

B F-Squeezing and F-Stretching Theorem

Theorem (F-Squeezing/F-Stretching Caging). Let F' be a shape function. Then, given an
F-cage of a standard topological ball in R? it is either an F-squeezing cage, an F-stretching
cage or both.

Proof. The proof follows the contrapositive. Suppose that a certain configuration ¢ of the
manipulator is neither an F-squeezing cage nor an F-stretching cage. This implies the existence
of F-squeezing and F-stretching escaping paths a= C M, and ot C MZ, with & = F(c),
that go from ¢ to non-caging configurations ¢t and ¢~ arbitrarily far from c. We will use
the existence of these two escape paths to construct a third escape path, this time in My,
establishing the non-F-cagedness of c¢. The proof consists of two steps, both illustrated in

Figure 7, that we address in following subsections:
1. Use a® and o~ to build a closed contractible curve in M/, The contractible curve will

necessarily cross Mj. We want those crossings not to be F-caging configurations.
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2. Construct a path inside My, from ¢ to one of such crossings by intersecting the contraction
of the curve with Mj. By construction, the contraction of the closed curve and, in
particular, its intersection with Mj must live in M/ This stablishes the non-F-
cagedness of ¢ and concludes the proof.

O

B.1 Construction of the Contractible Curve

The contractible curve must satisfy two requirements:

e All crossings of the curve through My, except for ¢, must be non-F'-caging.

e Both the curve and its contraction must live in M/ree.

Let B C R? be a ball containing O such that any placement of the point fingers outside B
is a non-F'-caging configuration of the manipulator. We will say that any configuration with
the point fingers outside B is at infinity. Note that, since O is compact, B must exist. If the
manipulator has n fingers, we can choose B to be a ball containing O with diameter dg > %,
where dp is the diameter of the object. All configuration of the manipulator with all fingers in
the exterior of B are non-cages, and consequently also a non-F-cages. We will assume then the
escaping paths a™ and o~ to terminate respectively at configurations ¢ and ¢~ at infinity.

We construct the contractible path by closing the concatenation of a™ and a~ outside
B, which will guarantee that all crossings through M; will correspond to to non-F-caging
configurations. Following Proposition 1, if we want to construct a contractible curve in M/,
we can do it independently for each point finger. We illustrate in Figure 10 the process of
completing the path for an individual finger.

Figure 10: Completion of the contractible curve in the workspace of point finger p;. In the case
of dimension 2 we choose «; outside the ball IT;(B) such that the resultant winding number of
the closed curve formed by the concatenation of IT;(a™), o; and II;(a™) is zero.

Each point finger p; = II;(c™) must be joined with the corresponding point finger p; =
IT;(¢”) outside B and in a contractible way. If the dimension of the workspace is d = 2, as
illustrated in Figure 10, the completion path goes along the boundary of B enough times to
undo the winding number of the concatenation IT; (a™ @ a~). If d > 2, since the object is a
standard topological ball, the exterior of the object must be homeomorphic to the exterior of
an euclidean ball, and in particular must be simply connected. Consequently, we can always
connect the ends of the escaping paths such that the resultant closed curve is contractible. We
will call o to such a completion curve and 3 to the resultant contractible curve a™ ® a ® a~.
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B.2 Intersection of the Contraction with M,

The contractibility of 4 implies the existence of an homotopy H : [0,1] x [0,1] — M/ that
contracts the closed path to c. We want to construct the intersection of H(S) with Mj. We
will show that H can always be approximated by a well behaved contraction that yields a
non-degenerate intersection.

The boundary of the square S = [0, 1] x [0, 1] maps into the curve 3, with the inconvenience
that three of the sides of the square map to ¢. To avoid this, and simplify posterior derivations,
we consider the quotient map 7 that identifies them into a single point in the boundary of S.
The map 7 transforms .S into a disc D whose boundary has a one to one mapping onto the
contractible curve f.

The characteristic properties of the quotient topology [13], expressed in Lemma 1 induce a
unique continuous map H : D —» M7 that commutes the diagram in Figure 11.

Lemma 1 (Passing to the Quotient). Suppose 7w : X — Y is a quotient map, B is a topological
space, and f : X — B is any continuous map that is constant on the fibers of m (i.e., if
w(p) = w(q), then f(p) = f(q)). Then there exists a unique continuous map f:Y — B such

1N

that f = fom:
YﬁB

f

From now on when mentioning the contraction we will refer to the quotient version H of
the homotopy. We will call g to the point in the boundary of D that maps into c.

H

N

Figure 11: Construction of the homotopy H induced by the quotient map. Note that H(q) = c.

The path that allows ¢ to escape inside My, lives in H (D) N M}. The construction of that
intersection relies on the Lemma 2, borrowed from [15]:

Lemma 2 (Milnor’s Lemma). Let M be an m-dimensional manifold and N an n-dimensional
manifold, with m >n. If f : M — N is smooth, and if y € N is a regular value, then the set
f~Yy) € M is a smooth manifold of dimension m — n.
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If M is a manifold with boundary OM and y is also regular for the restriction f | OM, then
f~Y(y) is a smooth (m —n) manifold with boundary. Furthermore, the boundary 0 (f_l(y)) 18
precisely equal to the intersection of f~1(y) with OM.

Let f be the composition f : D Ay ppfree FL R Then f~(k), as a subset of D, is mapped
by H into the mentioned intersection H (D) N M. Proving the existence of the escaping path
in My, is equivalent then to show the existence of a path in f~!(k) from ¢ to another point qo
in the boundary of D. By construction, H maps that path into an escaping path in My, to a
non-F-caging configuration.

If f is smooth and k is a regular value, the application of Milnor’s Lemma says that f~!(k)
is a one dimensional smooth manifold with f~1(k) N 9D as boundary. As a consequence, q is
connected through a continuous and smooth path to a different point in 0D within the level
set f~1(k), which finishes the proof. All that remains to see is what happens when f is not
smooth or k is not a regular value of f.

Smoothness of f

In order to grant the smoothness of f we e-approximate it. This approximation needs to
guarantee that the contraction remains in M/ and that all crossings of the contractible path
B through My still remain non-F-caging. We use Whitney’s Approximation Theorem [14]
to find smooth approximations both of the curve 8, and the contraction that satisfy both
constraints.

Lemma 3 (Whitney Approximation Theorem). Let M be a smooth manifold and let F :
M — RF be a continuous function. Given any positive continuous function € : M — R,
there is a smooth function F': M —s R¥ that is e-close to F (||F(z) — F(z)| < e(x) Vo € M).
If F is smooth on a closed subset A C M, then F can be chosen to be equal to F in A.

The challenge is to preserve two key properties of H when we construct the approximation:

e All crossings of the boundary of H(D) through My, other than ¢, must remain non-F-
caging.

e The approximation of H must still live in M/7ee,

The first property was originally satisfied by making the contractible curve go to infin-
ity before crossing Mjy. Spurious crossings through Mj due to the approximation must be
prevented. This is especially awkward near the crossing at ¢. No matter how small an € we
choose, the e-approximations of 3 and H could cross again. Similarly, where H makes contact
with the obstacle, the e-approximation might violate the second property by leaving the free
space M/ The following procedure produces a smooth approximation while avoiding the
problems:

1. Replace the contractible curve /3 locally at ¢ by a smooth patch in M/, as in Figure 12.
The free space is defined as M/™ = M\ int [OM]. Rodriguez and Mason [24] show that
this definition correctly regularizes the space, ensuring the free space has no thin bits.
Even if ¢ is in contact with OM, there is still freedom to smoothly escape the contact
through half of the directions on the tangent space.

23



2. Apply a similar patch wherever the contractible curve contacts the object. Thanks to
the regularity of the free space, Proposition 3 in [24] guarantees that these contact points
are isolated configurations.

3. Apply Whitney Approximation Theorem to approximate the contractible curve by a
smooth curve, equal to the original curve on the patches.

4. Define the contraction H as before, but using the smoothed contractible curve.

5. If the contraction makes contact with the object, the approximation could violate the
second key property. Repeat the previous strategy of defining smooth patches.

6. Apply Whitney Approximation Theorem once more to approximate the contraction by a
smooth map H that equals the original contraction on the closed set 9D C D and on any
patches, and otherwise lives in the free space M/, This guarantees that the boundary
of the contraction will map to the approximated contractible curve.

-----
.- .y

o*

Figure 12: Smooth patch for replacing the contractible curve in a neighborhood of ¢ and
eliminate possible non-smoothness at the crossing with M.

Regularity of k

If k is not a regular value of f, f~!(k) is not necessarily a manifold and Milnor’s Lemma
cannot be used to build the intersection of the contractible curve and Mj. We will see that,
even if that is the case, if the level set f~!(k) is well behaved, the escape path connecting g
with a boundary point of f~1(k) still exists.

We will make use of Sard’s Theorem [15] which characterizes the critical points of smooth
functions.

Lemma 4 (Sard’s Theorem). Let f: U — RP be a smooth map, with U open in R"™ and let
C' be the set of critical points; that is the set of all x € U with rank df, < p. Then f(C) C RP
has measure zero.

The Theorem says that the set of regular values is dense on the image of f. Consequently,
if k is a critical value, there is a monotonic sequence of regular values {k,},, converging to k.

By virtue of Milnor’s lemma, { f *1(kn)}n is a series of smooth one dimensional manifolds.
This level sets induce a sequence of smooth paths that gradually approach the level set f~1(k),
as illustrated in Figure 13. In general, the limit of a sequence of continuous paths does not
necessarily converge to a continuous path but, if we assume that we constructed the smooth
approximation of the contraction as a semialgebraic approximation, the function f = F o H,
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level sets { f _1(l<:n)}n and f~1(k) will also be semialgebraic. Consequently, the approximating
paths and the limit, that lives in a semialgebraic set, must also be continuous and semialgebraic.
Which concludes the proof. O

Figure 13: (a) When k is a critical value, f~!(k) C D might not be a smooth manifold. Still
q is path-connected to a point ¢y € D mapped by H to a non-caging configuration. (b) To
prove it we consider the limit of a series of level sets { f _l(k‘n)}n of regular points where the
path is guaranteed.
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