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Abstract

Grasping an object is usually only an intermediate goal for a robotic manipulator. To
finish the task, the robot needs to know where the object is in its hand and what action
to execute. This paper presents a general statistical framework to address these problems.
Given a novel object, the robot learns a statistical model of grasp state conditioned on
sensor values. The robot also builds a statistical model of the requirements for a successful
execution of the task in terms of uncertainty in the state of the grasp. Both of these models
are constructed by offline experiments. The online process then grasps objects and chooses
actions to maximize likelihood of success. This paper describes the framework in detail,
and demonstrates its effectiveness experimentally in placing, dropping, and insertion tasks.
To construct statistical models, the robot performed over 8000 grasp trials, and over 1000
trials each of placing, dropping and insertion.

1 Introduction

We study the problem of post-grasp manipulation, where a robotic manipulator performs a
task with a grasped object, like setting down a mug, inserting a key into a hole, or flipping
a pancake with a spatula. In each of these examples, knowing the pose of the object in the
robot’s hand, the grasp state, is often critical. Intuitively, harder tasks demand a more accurate
estimate of the grasp state than simpler ones. For example, in Figure 1, balancing a pen on a
table requires more accuracy than dropping it into a container.

More generally, consider a manipulator, an object to manipulate, a task, and a parametrized
set of actions designed to accomplish the task. In this paper we build a data-driven framework
to automate the process of deciding whether the task is solvable with the available hardware
and set of actions, and find the action most likely to succeed.

The statistical framework proposed in this paper is suited to model post-grasp manipu-
lation tasks like the ones described above. We model these tasks by breaking them into two
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(a) (b)

Figure 1: Two manipulation tasks (a) dropping and (b) balancing, with different required
accuracy of the pose of the manipulated object.

independent steps. First, estimate the state of the grasp with available sensor information, and
second, model the accuracy requirements that the particular task imposes on our state estima-
tion. This separation yields the benefit that we can use the same model of state estimation for
different tasks, and the same model of task requirements for different manipulators. Using this
framework, each sensor reading generates a probability function in task action space, enabling
us not only to find the optimal action, but to understand just how likely that action is to
succeed.

Figure 2 illustrates the process for the task of placing an object. First, we use sensors in
the hand to estimate the probability distribution of the pose of the grasped object, which will
be referred to as the belief state. Second, we predict the probability of succeeding at a task
given the pose uncertainty. Both of these are computed based on data-driven models. Finally,
we combine these probability functions to predict the probability of success of each available
action, and choose the action most likely to succeed.

In this paper we test the framework with three different manipulation tasks: placing an
object, dropping it into a hole, and inserting it, all three described in Section 1.2. The exper-
imental setup in Figure 2 consists of a simple gripper [37, 30] mounted on a robotic arm that
iteratively grasps an object from a bin, estimates the distribution of the pose of the object,
computes the probability of success for all available actions, chooses the optimal one, and
executes it.

1.1 Motivational Simple Example

Let us first look at the simple example in Figure 3. A two-fingered planar gripper holds a
rectangular object to insert it into a hole. We assume the object always makes face contact
with the palm of the gripper, so that once it is in the hand, it has only one degree of freedom,
which we call grasp state x. One of the fingers of the gripper has a noisy angle sensor z. The
angle z informs us of the position of the rectangular block. The question we study in this paper
is, given a sensor reading z, where should we move the gripper (how do we choose action a) to
maximize the probability of success of inserting the object, and how likely are we to succeed.
Notice there are two main factors that influence the probability of success:
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Figure 2: Procedure to choose the optimal action to accomplish a manipulation task. First,
we estimate the belief state of the grasp, that is, a probability distribution of grasp state from
sensor readings. Second, we learn how robust our task is to state uncertainty. Finally, we
combine them to estimate the probability of success of all available actions and choose the
best one.
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Figure 3: Motivational simple example in Section 1.1. A two-fingered planar gripper grasps
a rectangular object with the goal of inserting it into a hole. The horizontal freedom of the
part is parametrized by x. One of the two fingers has a noisy angle sensor z, which we use to
estimate the location of the object in the hand. We note with action a the horizontal position
of the gripper that we choose to vertically insert the object in the hole. Finally, ε represents
the error in a with respect to the optimal value that would align the centers of object and hole.
The goal is to estimate the likelihood of successful insertion using action a given the sensor
reading z.
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(a) Noise Model P (z|x) (b) Posterior P (x|z)

Figure 4: Sensor model for the gripper in the motivational example in Figure 3. a) The
observation or noise model P (z|x) is the distribution of possible values z we read from the
sensor, assuming the object is at x. The level of noise in the sensor determines the sharpness
of the distribution P (z|x). b) The posterior distribution P (x|z) of the pose of the object x
is obtained by inverting the observation model. If the sensor has no noise (top row), for the
simple gripper in Figure 3 which has no sensor aliasing, we recover the position of the object
with zero uncertainty. The higher the level of noise, the less certain we are about the location
of object in the hand.

• How accurately can we estimate the pose of the object? In the rest of the paper, we will
refer to this factor as the sensing capabilities of the hand.

• What is our margin for error when inserting the object? In the rest of the paper we will
refer to this factor as the task requirements.

Both are empirically modeled with the output of tailored experiments.
If there is no noise in the sensor reading z, and the geometries of both hand and object

are known, we know with zero uncertainty the state of the grasp x, i.e., the location of the
object. While not true in general, for the simple example in Figure 3 there is a one to one
mapping between z and x, and we can therefore recover x perfectly. However, with the addition
of noise, the estimate of object pose becomes a distribution P (x|z), rather than an isolated
configuration. Figure 4 shows how that distribution changes for three different sensor noise
models P (z|x). Section 3.1 details the process to derive the belief state P (x|z) from the
observation model P (z|x).

The second factor to consider is the margin of error the task allows. Notice that we can
effectively change that margin of error by varying the shape of the hole. Figure 5a shows three
differently shaped holes that induce three different task requirements. The larger the hole, the
less accurately we need to know the object location. In this case, the action is parameterized by
a, the gripper position we choose. Figure 5b shows that the probability of successful insertion
varies with the error ε in the estimate of the object pose.

We can now combine the probabilistic models for the sensing capabilities of the gripper
(Figure 4b) and task requirements (Figure 5b) to find the optimal placement a of the gripper
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(a) Different hole shapes. (b) P (Success|ε)

Figure 5: (a) Three different hole shapes. (b) Precision required in the estimation of the pose of
the object for a successful insertion, induced by the three holes. P (Success|ε) is a model of the
probability of successful insertion as a function of the error ε in that estimate. The top hole has
the exact same size as the part, which requires perfect accuracy of object position, the middle
hole is wider, and requires less accuracy. The corners of the bottom hole are chamfered, which
also allows for some deviation where, for the purpose of this example, we assume a continuous
degradation of the probability of success as the error increases.

to maximize the probability of successful insertion. Figure 6 shows the result for the three
sensor noise models in Figure 4a and the three holes in Figure 5a. Note that even when the
estimation of the pose is uncertain, if the hole is wide the chance of success remains high.
Likewise, if the hole is a perfect fit for the part, even the smallest amount of noise in the sensor
reading will make it impossible to insert the part in the hole.

The example is a simple model to illustrate the principles. Real scenarios are more com-
plex and assumptions are often violated, making it difficult to solve analyticalyl or through
simulation. We leverage analytical models to define the structure of the statistical framework,
but the actual models are learned directly from observed data. Our goal is for a robot to learn
these probabilistic models on its own so it can predict the likelihood of success for a given
post-grasp manipulation task.

1.2 Experimental Manipulation Tasks

We evaluate the proposed framework on three different real manipulation tasks: placing, drop-
ping, and inserting an object. In all three cases the object is a highlighter marker, like the one
in Figure 7a. The gripper used in the paper is prototype 3 of the MLab Hand [37, 30, 39], the
simple gripper in Figure 7b. It has three fingers all compliantly connected to a single actuator.
When the hand grasps an object, the fingers “fall where they may” around the object. Both
the fingers and the actuator have encoders, and by looking at those sensor values, we estimate
the pose of the grasped object. In this paper we use the encoders in the three fingers as the
input to the learning system.

The placing task consists of picking a marker from a bin full of markers, and balancing
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Figure 6: Probability of successful execution of the simple task in Figure 3 as a function of
the chosen action a. The matrix shows the probability of success over choice of action for
different combinations of noise models (rows) and hole shapes (columns). As expected, both
the sensing capabilities of the hand, and the task requirements affect the predicted probability
of success. Accurate sensors (top row) allow us to reliably execute difficult tasks, and simple
tasks (central column) allow for noisier sensors.

(a) (b)

Figure 7: (a) A highlighter marker used as an object in the experiments in the paper. (b)
Prototype 3 of the MLab Hand.
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Figure 8: Diagram of the strategy used to place a highlighter marker. 1) The hand picks a
marker out of the bin, and estimates its location. The rest of the strategy is open loop. 2)
Reorientation of the hand so that the marker is perpendicular to and centered with the placing
platform. 3) Push against the platform to center the location of the marker along its axis. 4)
Rotation of 180 degrees and re-centering with respect to the platform. 5) Push again against
the platform. 6) Release marker.

it vertically on top of a platform. As illustrated in Figure 8, we use an intermediate step
where we push the marker against the platform, to make sure that there is enough clearance
to execute the placing action.

The second experimental task is to drop a marker inside a relatively large hole, as illustrated
in Figure 9. We will see that the experiments corroborate the intuition that dropping is simpler
than placing, in the sense that it can get away with a more noisy estimation of the pose of the
marker.

Finally, insertion is a horizontal version of the peg-in-hole problem, where the hand tries
to insert the grasped marker into a relatively small hole, as shown in Figure 10. Again,
experiments will corroborate that insertion is a more demanding manipulation task than either
placing or dropping.

Note that, in the three cases, the goal is to execute the task and accurately predict the
probability of success using only feedback from in-hand sensors. For the experiments in this
paper we assume that the highlighter marker always lies flat against the palm of the hand.
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Figure 9: Diagram of the strategy used to drop a highlighter marker into a hole. 1) The hand
picks a marker out of the bin, and estimates its location. The rest of the strategy is open loop.
2) Reorientation of the hand so that the marker is centered with the hole. 3) Release marker.

The configuration space of a cylindrical object lying flat on the palm is four dimensional:
the two polar coordinates of the axis of the cylinder, the location of the cylinder along the
axis, and the rotation with respect to that same axis.

However, in this paper we only consider the first two dimensions, since the last two dimen-
sions are unobservable to the sensors, and not relevant for the execution of the three tasks.
Note that for placing and insertion we included an intermediate pushing step to explicitly
reduce the uncertainty of the cylinder along its axis (see Figure 8 and Figure 10). This reduc-
tion has computational and data-requirement benefits, as later discussed in Section 6.4, and is
beneficial for visualization purposes and clarity of exposition.

The chosen state representation is then, that of a symmetrical cylinder in the plane as
parametrized by the polar coordinates x = (r, θ) of its axis, as in Figure 11. That is x ∈ X =
R× SO(2).

1.3 Paper Outline

We break up the rest of the paper as follows. Section 2 reviews previous work. Section 3
gives an overview of the proposed statistical framework. Section 3.1 explains how we learn the
sensing capabilities of the hand. Section 3.2 explains how we learn the task requirements for
the three different post-grasp manipulation tasks: placing, dropping into a hole, and insertion.
Section 3.3 shows how to combine these probabilistic models to predict success. Section 4
presents experiments that validate the proposed framework, and Sections 5 and 6 conclude
and discuss future directions.
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Figure 10: Diagram of the strategy used to insert a highlighter marker into a hole. 1) The
hand picks a marker out of the bin, and estimates its location. The rest of the strategy is open
loop. 2) Reorientation of the hand so that the marker is perpendicular to and centered with
the placing platform. 3) Push against the platform to center the location of the marker along
its axis. 4) Alignment of the axis of the marker with the axis of the hole. 5) Insert marker.

Figure 11: Parametrization of the pose of the cylindrical marker in the hand. We assume the
marker is always flat against the palm, and parametrize its location by the polar coordinates
(r, θ) of its axis. We will ignore the exact location of the marker along the axis, which is
unobserved both by the parametrization and the sensors in the hand.
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2 Related Work

This paper is a revision and extension of [32], and is part of the “Simple Hands” project
described in [30, 37, 38].

This paper develops a statistical approach to model grasping and manipulation, with a
focus on how uncertainty affects post-grasp manipulation. The importance of uncertainty
in manipulation has long been recognized. Incorporating stochastic models into modeling,
perception and control was attempted even in the 1970’s, for example using Kalman filters in
industrial assembly [40, 43]. For more recent work using either Kalman filters or particle filters
see [16].

Numerous early experiments illustrated the necessity of modeling uncertainty. Most notable
was Inoue’s peg insertion work [24] which inspired the pre-image backchaining approach [28, 12].
Preimage-backchaining adopted a possibilistic approach, representing the robot’s belief state by
a set of possible configurations. Later work extended the approach to probabilistic models [27].

The 1980’s and early 1990’s saw several projects exploring grasping and manipulation under
uncertainty, using both possibilistic and probabilistic models. [4, 18, 17, 6, 9, 10, 29, 42, 33,
5, 13, 8] Among these, the closest to the present work are probably [17, 10, 6], which develop
Bayesian decision-theoretic techniques, applied to planar grasping problems and the problem of
an object sliding in a tilting tray. Dogar and Srinivasa [11] applied similar ideas to clutter and
uncertainty in the context of push-grasping. Kang and Goldberg [26] used a random sequence
of parallel-jaw grasps to classify grasped objects using a Bayesian process.

Goldfeder and Allen [19] approached the problem of grasp planning from a data-driven
perspective.

There is a substantial literature on statistical frameworks to model uncertainty. POMDPs [7]
(Partially Observable Markov Decision Processes) are a general framework that describes the
current problem well. Hsiao et al. [23] used a POMDP framework to track the belief of the pose
of an object and tactile exploration to localize it by planning among grasping and information-
gathering trajectories. PSRs [44, 2] (Predictive State Representation) are also introduced as
a general framework to learn compact models directly from sequences of action-observation
pairs without the need for a hand-selected state representation. Lavalle and Hutchinson [27]
advocate information-spaces to formalize the process of propagating uncertainty along mo-
tion strategies. [20] explored the application of optimal control policies in information space,
derived from changes in observable modes of interaction. Platt has worked on Markov Deci-
sion Process planning, with actions expressed relative to contact locations, and on compliant
hand motion [35]. Petrovskaya and others have worked on belief state estimation for uncertain
manipulation task geometry [34].

Stulp et al. [41] learned motion primitives to optimize the chance of grasping an object
with Gaussian uncertainty on its location.

Some work has been done on analyzing the grasp outcome as well. Morales et al. [31] used
real grasps on a collection of objects to predict the reliability of the grasp process.

Balasubramanian et al. [1] noted that different tasks lead humans to different initial grasps,
and Faria et al. [14] were able to estimate the best part of an object to grasp based on the task
using human trials.

In the context of post-grasp manipulation, Jiang et al. [25] looked at scenes to determine
good locations to place objects. However, they did not study how robust the final process of
actually placing an object is, which is the subject of our work. Fu et al. [15] addressed the

11



problem of batting an object to a goal in the presence of uncertainty. They first maximized
information gain in an observation step, and then chose the action most likely to succeed.
Holladay et al. [22] used inverse motion planning to determine the optimal placement of a
robot’s other hand to increase the probability of successfully placing objects.

3 Statistical Framework

Given a manipulation task and a sensor observation z ∈ Z of the state of the task, our
goal in this paper is to find the action a from a set of available actions A that maximizes
the expected performance of accomplishing the task. The following diagram illustrates three
different strategies to approach the problem:

P (a|z)

Z ×A
(z, a)

..

//

((

X ×A
(x, a)

// P (a|x)

Bel(X)×A
(P (x|z), a)

// P (a|P (x|z))

The first and most straightforward strategy is to model the performance of an action directly
as a function of sensor observations. The decision on what action to execute and how likely
it is to succeed is based upon the history of sensor readings. It makes the least assumptions
about the system but also uses the least knowledge about the structure of the problem. It is
also the most difficult to implement, since the complexity of the model depends strongly on
the dimension of both the sensor and action space, which might be large.

The second strategy introduces an intermediate step where sensor inputs z are first pro-
jected into a more compact representation of state, noted here by x, and all information not
captured by that representation is assumed to be irrelevant for planning optimal actions. In
this work, we chose x to be the pose of the grasped object. The probability of success of an
action is then modeled as a function of the most likely pose of the object x rather than the
sensor observations z directly. The intermediate representation x potentially reduces the model
complexity, since the dimension of state space is generally smaller than that of sensor space.
On the other hand, it introduces the possibility of information loss or lack of observability. It
also fails to address uncertainty in the system induced by noisy sensors.

In this paper, we implement a third approach, which encapsulates uncertainty by repre-
senting the system by its belief state P (x|z) rather than just by its most likely value x. By
explicitly considering uncertainty in the state of the task we can make a more informed and
accurate prediction on the probability of success of a given action.

The dimension of the space of belief distributions Bel(X) is too large to model the proba-
bility of success of an action P (a|z) directly as a function of the belief P (x|z). We can alleviate
this problem by marginalizing the probability of success of an action P (a|z) with respect to
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the true state of the system x:

P (a|z) =

∫
X
P (a|z, x) · P (x|z)dx

=

∫
X
P (a|x) · P (x|z)dx (1)

where, in the last step, we make the assumption that the state representation x is informative
enough that the output of an action is conditionally independent of sensor observations z,
given the true state x.

This assumption enables the computation of the probability of success P (a|z). Note, how-
ever, that for some tasks the pose of an object is not always fully representative of the grasp
state. For example, in a compliantly actuated gripper, the state of the actuators also contains
information on how stiff the grasp is, which is not captured by the pose of the object and might
be relevant to determine the outcome of an action.

It is key to note that (1) divides the problem of modeling the performance of an action
P (a|z) into two simpler ones: modeling the distributions P (x|z) and P (a|x). Respectively,
these represent the sensing capabilities of the gripper and the task requirements for a successful
task execution. The following subsections detail the approach to model them, as well as the
process to combine them to give an accurate estimate of P (a|z).

3.1 Sensing Capabilities

The shape of the belief state P (x|z) depends on several factors, including the geometries of
the manipulator and object, the location and type of sensors, and the type of grasp. Assuming
fixed geometries for the manipulator, object, and sensors, we will see that different grasps yield
differently shaped beliefs.

We will pay special attention to the sharpness of the belief as an indicator of the confidence
we get on the pose of the object. As illustrated in Figure 12 the choice of grasp has an
important effect on that confidence. We will say that some grasps are more informative than
others.

In this section, we describe the process to model P (x|z) from experimental data. Learning
P (x|z) directly is usually data-intensive, since it can be arbitrarily shaped and the complexity
of the model depends on the dimension of sensor space. To simplify the process, we use Bayes
rule to flip the conditioning in P (x|z) to P (z|x), the likelihood or observation model of the
system.

P (z|x) is the distribution of sensor readings given the true state of the system. Unlike
the posterior distribution P (x|z), which can be arbitrarily complex due to possible lack of
observability or sensor aliasing, the likelihood P (z|x) tends to be simpler and we assume here
to follow a Gaussian distribution P (z|x) ∼ N (z;µ(x), σ2(x)). In order to make the learning
feasible, we also assume independence between sensors. This leads us to the following equation
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Figure 12: Three grasps of a highlighter marker, and the corresponding estimated beliefs of the
pose of the object. Note that grasps where the object is localized or constrained by geometric
features of the hand yield sharper beliefs. These tend to correspond to more stable grasps.
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for the posterior distribution:

P (x|z) =
P (z|x)P (x)

P (z)

' N (z;µ(x), σ2(x)) · P (x)

P (z)

' P (x)

P (z)
·
L∏
k=1

N (zk;µk(x), σ2k(x))

∼ P (x) ·
L∏
k=1

N (zk;µk(x), σ2k(x)) (2)

where P (x) is the state distribution prior to any sensor observations, both µk and σk are
functions of the true state of the system x, and L is the number of sensor dimensions. Since
P (z) is independent of x, we omit it and normalize P (x|z) a posteriori. In the rest of the paper
whenever we use the expression N (z;µ(x), σ2(x)), we will refer to the decomposition induced
by the independence between sensors assumed in (2).

We now detail the process of estimating the prior distribution P (x) and the observation
model P (z|x) from a collected dataset C1 =

{
(zi, xi)

}
i

of pose/sensor readings pairs. Figure 14
shows data of the 2000 grasps collected for C1 (see the dataset in multimedia Extension 1).

3.1.1 Learning the Prior Distribution P (x)

The prior distribution P (x) is the distribution of the state of the system before considering
sensor information. In our case, it is a reflection of the distribution of stable grasps yielded
by the combined geometries of object and gripper. Figure 13 illustrates the three most stable
configurations or grasp types for the hand and object used in this paper. The expectation is
that the prior distribution P (x) will cluster around those three grasp types.

We regress P (x) by estimating the density of the pose of the object in state space. We use
Kernel Density Estimation to model P (x) as a sum of kernels:

P (x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(3)

where K is a Gaussian kernel, h is the bandwidth parameter and xi are the state points in
the dataset C1. The bandwidth parameter is chosen automatically to minimize the mean
integrated squared error following the algorithm in Botev et. al [3]. Figure 14 illustrates the
learned prior distribution. As expected, it shows three clusters corresponding to grasp types
I, II and III in Figure 13.

3.1.2 Learning the Observation Model P (z|x)

Equation (2) yields an approximation of the observation model and expresses it in terms of
functions µk(x) and σk(x):

P (z|x) ≈
L∏
k=1

N (zk;µk(x), σ2k(x)) (4)
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(a) Grasp type I

(b) Grasp type II (c) Grasp type III

Figure 13: The three most stable configurations of the object/gripper pair used in our experi-
ments.
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Figure 14: (a) Distribution of grasp states in dataset C1. Each dot corresponds to the final
pose of the marker after an experimental grasp. (b) Corresponding prior distribution P (x)
estimated with Kernel Density Estimation. The three clusters in the distributions correspond
to the three expected grasp types in Figure 13.
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Figure 15: (a) Example grasp with its corresponding estimated (b) likelihood P (z|x) and (c)
posterior distribution P (x|z). The dot corresponds to the most likely pose of the object.

We use Gaussian Processes (GP) [36] to regress functions µk(x) and σk(x) for each sensor. For
that we again use the dataset C1. The process is detailed in the following steps:

1. Use a GP on half of the data points in C1 to estimate the mean of the observation model
P (z|x), µk : X −→ Zk. This implies training one independent GP for every sensory
input, as a function of r and θ which computes the most likely sensor values for every
possible state of the system x. Note that we will get a better estimate of the observation
model for the regions of the state space that are most often observed, since those areas
will be more populated with the collected data.

2. Complement the other half of the dataset C1 with the sensor readings z̄i = µ(xi) predicted
by the learned observation model, and the squared error yielded by that prediction ∆2zi =
(zi − z̄i)2, C+

1 =
{

(zi, xi, z̄i,∆2zi)
}
i
.

3. Use GPR on C+
1 to regress the variance of the observation model σ2k : X −→ ∆2Zk.

Again, this implies training one independent GP for every sensor in the system.

By following these steps, we can now estimate P (z|x) as in (4) (see Multimedia Extension
2 for example code). Figure 15b and Figure 15c illustrate the estimated observation model
and posterior distribution P (x|z) for the example grasp in Figure 15a.

3.2 Task Requirements

We now model the probability of success of an action, P (a|x). This will tell us how accurate
the estimation of the state of the grasp must be for an action to successfully execute the task.
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While not required in general, we choose to state parameterize the set of actions. For
example, for the task of placing a cylindrical object, we design an action a so that given the
true state of the grasp first turns the cylinder so it is upright with respect to the ground, and
then sets it down. We will note an action parameterized by state as ap, where p indicates the
state of the system for which the action was designed.

In general, the success of an action depends both on the specific action ap itself and the true
state of the grasp x. However, in order to reduce the complexity of the process, we will assume
that, if the true state of the system is x, the probability of success of action ap only depends
on (x− p), the difference between the real and assumed state of the grasp. For example, when
placing a cylinder whose estimated axis is 1 degree off from its true state, we are more likely
to succeed than if we try to place an object several degrees off.

We model the outcome of an action ap as a Bernoulli random variable of parameter φap
that depends on the true state x, so that:

P (ap = 1|x) = φap(x) = φ(x− p) (5)

The use of state parameterized actions also allows us to introduce controlled noise in the
space of mismatches ε = (x− p). To learn φ(ε), during each task execution, if the true state of
the grasp is x, instead of choosing the action ax, we execute action ap with p = x+ ε, where ε
is a uniformly distributed error in the space of system states.

We now detail the process of estimating the task requirements model φ(ε) from a dataset
C2 =

{
(zi, xi, εi, yi)

}
i
, where εi is the error in system state and yi is the success/failure output

of the trial (see dataset in Multimedia Extension 3). For each task, we uniformly sample ε from
E = [−∆rmax,∆rmax]× [−∆θmax,∆θmax]. We choose ∆rmax and ∆θmax to be large enough to
cover the range of errors we care about, and assume everything falling outside that range to
be a failure.

To learn the model, we regress the Bernoulli parameter φ from dataset C2 containing
the outcome of more than 1000 executions for three manipulation tasks: placing, dropping,
and insertion (see Multimedia Extension 4 for example code). The results are illustrated in
Figure 16. As expected, when |x− p| increases, the likelihood of task success decreases. Note
that for the dropping task the probability decreases much slower than for placing or insertion.
This indicates that dropping a marker into a hole is easier than balancing it on a platform or
inserting into a small hole. The task tolerates more error.

The task requirements for insertion resemble the shape of an X. This can be explained by
noticing that if we incorrectly try to insert the marker too high, but also tilt it downward, the
end of the marker still manages to fit in the hole. Besides enabling accurate estimates of the
probability of successful task execution, computing these task requirement distributions also
give us insight in to what types of errors the task execution is robust against.

In general, the more data we use the more accurate the regressed distributions of task
requirements are. The magnitude of the variance returned by the Gaussian Process Regression
can be used to define a stopping criteria. In our case, we use the average standard deviation
to assess how certain we are about the learned distribution. The bottom graphs in Figure 16
shows how the average standard deviation changes with the number of experiments for each
task.
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Figure 16: Learned task requirements for three manipulation tasks: dropping, placing and
insertion. [2nd Row] Dataset C2 of task execution with perturbed states. Dark points are
successes and light ones are failures. Notice that the range of perturbations is different for each
task. [3rd Row] Distribution of task requirements P (ap = 1|x) as a function of the error in state
estimation. [4th Row] Average standard deviation of the regression of the Bernoulli parameter
of P (ap = 1|x) obtained with a GP. This is used as a rough estimate of the convergence of the
algorithm and stoping criteria.
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3.3 Matching Task Requirements with Sensing Capabilities

Here we combine the models of P (x|z) and P (a|x) to estimate the probability of success of an
action ap. For that, we extend (1) as:

P (ap = 1|z) =

=

∫
X
P (ap = 1|x)P (x|z)dx

=

∫
X
φ(x− p)N (z;µ(x), σ2(x))

P (x)

P (z)
dx

'
∫
E
φ(ε)N (z;µ(p+ ε), σ2(p+ ε))

P (p+ ε)

P (z)
dε (6)

where we apply the change of variables ε = x− p, and N (z;µ(x), σ2(x)) represents the decom-
position in (2).

In the experiments we approximate the integral numerically (see Multimedia Extension 5
for example code). We grid the space of mismatches between real and estimated states into
Nr ×Nθ. Letting εij be the corresponding error, we can approximate the integral in (6) as:

P (ap = 1|z) '
Nr∑
i=1

Nθ∑
j=1

φ(εij)N (z;µ(p+ εij), σ
2(p+ εij))

P (p+ εij)

P (z)
∆A (7)

where ∆A is:

∆A =
4∆rmax∆θmax

(Nθ − 1)(Nr − 1)

Once we compute P (a|z) we find its maximum in action space to choose the optimal action
to execute. Depending on that maximum probability we can decide either to execute the task
with the optimal action or to abort the execution. Figure 17 shows the complete process for
an example grasp.

The presented framework decouples the learning of the sensing capabilities of the hand
from the learning of the requirements of the task. For a given hand and object, we only need
to compute its sensing capabilities once. For any given new task, we only have to compute the
task requirements, and then follow the described procedure to estimate the overall probability.

Another possible scenario where the decoupling between both models is useful is in sharing
models of task requirements between different robots. For example, an industrial robot could
learn in a room for days at a time, and a mobile manipulator could reuse those learned models.

4 Experimental Validation

To validate the proposed framework, we use the hand and object in Figure 7 to complete three
different manipulation tasks. This requires one training set for the sensing capabilities of the
hand, P (x|z), and three training sets to estimate the task requirements, P (a|x), one for each
of the tasks. After learning these functions, for any new grasp, we can predict the action most
likely to successfully execute a task and its expected probability of success.

We are interested in evaluating the accuracy of the predicted probability of success. For
that we execute each task 500 times according to the action most likely to succeed as predicted
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Figure 17: Complete process to compute the probability of success at placing a marker. (a)
Example grasp. (b) Learned belief P (x|z) of the pose of the object. (c) Learned task require-
ments, P (a|x), for the placing task. (d) Estimated probability of success for the parametrized
set of placing actions. The white dot corresponds to the optimal action to execute.
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Figure 18: [Top] Comparison between the experimental and predicted probability of success.
The shaded region is a 95% confidence interval of the estimation of the Bernoulli parameter,
according to a binomial distribution. The plots show that the predictions follow the experimen-
tal observations quite well. [Bottom] Precision-recall curves of the success in task execution
formed by only considering task executions whose predicted probabilities were above certain
thresholds. The plot shows that we can increase the success rate in task execution by rejecting
low probability grasps in the three tasks.

by the learned models. After each execution, we note down both the predicted probability of
success and the actual outcome of the experiment (see data in Multimedia Extension 6).

To test the validity of the predictions, we group grasps by their predicted task success
probability and compare it with their correspondent experimental success rate. For example,
if we take all grasps that were predicted to succeed at an action around 60% of the time, the
average experimental success rate for those grasps should ideally be around that same 60%.

Figure 18 compares the experimental success ratios with the predictions by the learned
models. We see that for the three tasks, the experimental probability follows the predicted
probability, supporting the validity of the framework.

Both the quality of the in-hand sensor feedback and the difficulty of the manipulation
task determine the range of values of the probability of success. From Figure 18, we see
that dropping is the easiest of the three tasks, followed by placing, and lastly insertion. This
could have been predicted by looking at the task requirements and noting that dropping
has the widest distribution of success in the presence of pose error. The plots in Figure 18
indicate that the proposed framework successfully predicts the probability of success of actions
independently of the complexity of the task.
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Predicting the probability of success of an action allows us to make an informed decision
on what action to execute and improve the overall system performance. The bottom row
of Figure 18 shows the precision-recall curves of the three tasks. They reveal that we can
effectively increase the success rate in task execution if we decide to abort executions whose
predicted probability of success are below a certain threshold. By changing that threshold,
we can move along the precision-recall curve, and achieve a desired performance. Dropping
increases from 80% to near 100% success, placing increases from 40% to 60%, and insertion
increases from 50% to 60%.

5 Conclusion

In this paper, we introduce a general statistical framework to model the problem of post-grasp
manipulation. The framework is composed of the following three steps:

• Off-line learning of sensing capabilities: We learn a model to estimate the belief
state of the grasp from in-hand sensor information. The training process creates two
models: first, a prior distribution of the expected final grasp states, and second, an
observation model of the hand/object pair that relates grasp states to expected sensor
readings. Both models are constructed from experimental data, and the combination
allow us to estimate the distribution of the state of the grasp P (x|z) from sensor readings.

• Off-line learning of task requirements: We also learn a model of the object pose
accuracy required to execute a specific post-grasp manipulation task. The model captures
how the probability of successful task execution degrades as a function of object pose
error. We train this model by systematically introducing controlled perturbations in the
state of the grasp, and recording the relationship between the noise introduced and the
success/failure outcome.

• On-line estimation of the probability of success: During execution time, we use the
off-line learned models for the sensing capabilities of the hand and the task requirements
to make accurate predictions of the probability of success. That prediction can be used,
for example, to choose the optimal action to execute from a set of actions or to improve
the overall performance of the system by deciding to abort runs when the predicted
probability is too low.

We implemented the framework and tested it on three different post-grasp manipulation
tasks: dropping, placing, and insertion. To validate the framework, the robot performed over
8000 real grasps, and over 1000 trials each of placing, dropping, and insertion.

6 Discussion

6.1 Insights

The proposed statistical framework is general, and is designed to be implemented on a real
system. The unpredictability of the real world, especially when contact and physical interaction
are involved, strengthens the case for a statistical framework.
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The sensing capabilities of a hand/object pair help us understand which grasps are infor-
mative and which are not. This can inform both the design of hands, as well as the design
of grasp policies, by being aware of what it means to be a good grasp from the point of view
of grasp observability. Different hands and strategies can then be tested to see exactly which
configurations give us the most certainty in object state, which would improve post-grasp
manipulation tasks down the road.

Learning the accuracy requirements of a task by artificially adding noise is an excellent tool
to identify weaknesses in task execution. We can discover, for example, that placing tends to
fail when the object is in a certain pose, so adding a move to avoid that pose could improve
the overall task success rate.

We can combine these two models, sensing capabilities and task requirements, to predict
the probability of successful task execution. The separation of the two models allows us to
mix and match different tasks and hands. If we reuse the same hand, for each new task, we
only need to learn its task requirements. Conversely, if we are executing the same task with
different hands, for each new hand, we only need to learn its sensing capabilities.

Estimating the probability of success is powerful, since it allows the robot to increase its
overall task success rate by not taking unnecessary risks. We can, for example, find an optimal
policy to minimize mean time to success in an abort and retry scheme, similar to [38]. In
addition, since we estimate the probability of success for the complete set of actions, we could
consider optimization with different cost functions, or in the presence of constraints.

6.2 Implementation

Designing a robust system to collect all the necessary data was both important and challeng-
ing. The amount of data required to learn probability functions forced us to carefully design
experimental setups requiring minimal human intervention. For the three post-grasp manipu-
lation tasks we had to focus on three different aspects: object acquisition, task execution, and
post-task reset. Having a human in the loop to hand objects to the robot was not an option,
since we needed to execute thousands of experiments and it would also possibly introduce bias
in the process.

We solved the object acquisition problem by having a large bin of objects and training an
open-loop grasping strategy that singulates a marker out of the bin approximately 40% of the
time. For task execution, it was important to make sure that the hand did not collide with
the environment, regardless of the pose of the marker or action chosen by the robot.

Finally, for resetting the system after task execution, different strategies were used depend-
ing on the task. For placing, the object was placed at the top of a ramp and knocked back into
the bin. For dropping, after some constraining moves, the object was grasped out of the hole
and dropped back into the bin. For insertion, the object was held the entire time and then
dropped back in. It is important to note that a fair amount of time was spent in designing
robust experiments, and this should not be overlooked when trying to collect data in a real
setting.

6.3 Assumptions

While the proposed framework is general, we make a few simplifying assumptions to implement
it on a real system. The goal of these assumptions is to reduce the total amount of data required
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to learn, with minimal sacrifices to functionality. Here is a summary of those assumptions:

• We assume that the probability of success of an action is conditionally independent of
sensor readings given the true state of the system, P (a|x, z) = P (a|x). This is reasonable
when the chosen state is a good representation; however, if it is incomplete, the estimate
of P (a|x) may be suboptimal. For example, the location of the center of mass of the
marker relative to the center of the hand seemed to have an effect on the probability
of success of the dropping task. However, the state representation (r, θ) we choose in
the paper does not capture it, and consequently it is not observable. This is treated as
noise in the process, and although we are still able to give accurate predictions of the
probability of dropping success, they could be better.

• We assume that the observation model P (z|x) for an object/hand pair is unimodal and
normally distributed. If the grasp is at a fixed and known state x, the distribution of
readings z that we get from the sensors in the hand is induced by the sensor noise, which
we assume here to be Gaussian. Note that the framework still holds without the Gaussian
assumption. It is however a common convenience to reduce the amount of data needed
to learn the observation model.

• We assume independence between in-hand sensors. This is generally not true. Still it is a
common simplification to reduce the complexity of the distribution to learn. It effectively
restricts the type of distributions we can learn, since instead of learning a distribution in
the joint space of all sensors, we learn a single dimensional distribution for each sensor
and multiply them.

• Finally, we assume that the set of actions designed to execute a task is state parame-
terized. This is often true, but again it is a convenience that allows us to reduce the
dimension of the model of task requirements. The framework still holds for sets of actions
not parametrized by state. However, to estimate P (a|x), we would need to sample the
product space of actions and states, rather than just the space of mismatches between
action and state.

6.4 Scalability

As this paper is based on data, we briefly discuss the scalability of this framework for varying
dimensionality in sensor space, state space, and action space.

• Sensor Dimension: If L is the number of sensors in the hand, we learn 2L Gaussian
Processes to compute the sensing capabilities of the hand, corresponding to the mean
and variance of P (z|x) for each sensor. Note that when we add additional sensors to our
hand, while the number of GPs increases linearly, the amount of data used to train each
GP is still the same, so it does not affect the accuracy of our estimates. If for example
we remove a sensor, the belief is now much less peaked, because we would indeed know
less about the state of the object. While the overall success rate may change based on
the absence or addition of sensors, the accuracy of predictions should not change.

• State Dimension: Increasing the dimension of the state space on the other hand can
have an effect on the accuracy. First, the sensing capabilities would now need to handle
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an additional dimension when computing the mean and variance of P (z|x). It has been
shown that the number of data points required to achieve the same accuracy for a GP
grows exponentialy with dimension [21]. In the case of sensing capabilities we can do
slightly better, as often the state is clustered in small areas of the space, or has an
underlying lower dimensional representation. If the state is truly uniform, then data
needs grow exponentially to maintain the same level of accuracy.

In the case of task requirements, the data requirement also grows exponentially with
dimension, since we are uniformly sampling errors in each dimension.

• Action Dimension: If we assume actions are state parameterized, then the action
dimension increases with the state dimension, and all the statements above hold true.
If instead, actions are not state parameterized, then increasing the dimension of the
action space will again cause the data required to learn our task requirements to a given
accuracy to grow exponentially. Note that increasing the action dimension will not affect
sensing capabilities.

• Computational Dependence on Dimension: In addition to the data requirement,
another factor that cannot be ignored is the computational complexity of calculating
these probability functions. As the number of data points increases, the computation
time for the Gaussian Processes used to compute the sensing capabilities and task re-
quirements suffer as O(n3). Gaussian Processes are much more dependent on the number
of data points compared with the dimension of each data point, so both sensor and state
dimension do not have too much of an impact.

Conversely, when trying to combine task requirements and sensing capabilities together,
that integral is directly dependent on the state dimension. Currently, we are gridding
up the state space finely in each dimension and numerically approximating the integral.
This is exponential with dimension, and puts a large requirement on time and memory (if
things are being precomputed). Given that we are computing the integrals of probability
distributions, we should be able to lessen this requirement by using particle and monte-
carlo based approaches. This will enable us to sample only in relevant regions and increase
efficiency.

6.5 Future Directions

One area we would like to explore in the future is understanding the statistical significance of
the distributions the robot learns. During experiments, we had no analytical means of knowing
when we had enough data. While we were able to show that our probability estimates improved
with more data, more analysis is needed to quantify how data density affects performance.

Carrying statistical significance through all of the distributions would enable us to compute
a confidence bound on our final probability distribution in action space. This would expand
the usefulness of our framework and help us understand how collecting more data affects our
estimates. Another direction that we are interested in exploring is using active learning to
selectively sample so as to reduce overall data requirements.

Finally, when the robot encounters a situation where the probability of success is not
acceptable, the options to increase it are to either abort and retry, design better actions, or
use better hardware. Instead we could consider a scenario where, based on the computed
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probability distributions, the robot decides to execute extra actions aimed at improving the
expected probability of success rather than aimed directly at solving the task.

In particular, we are interested in developing robots with regrasping capabilities. Inserting
a key into a lock is nearly impossible if you are holding it by its teeth rather than its head.
Being able to regrasp objects, either to reduce state uncertainty or change configuration, would
greatly increase the capabilities of current autonomous robotic systems.
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Appendix A: Index to Multimedia Extensions

Extension Media Type Description

1 Data Data used to compute sensing capabilities
2 Code Sensing capabilities source code
3 Data Data used to compute requirements for dropping, placing, and insertion
4 Code Task requirements source code
5 Code Overall framework source code
6 Data Computed results for dropping, placing, and insertion
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