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Abstract

This paper addresses the identification of the inertial parameters and the contact forces
associated with objects making and breaking frictional contact with the environment. Our
goal is to explore under what conditions, and to what degree, the observation of physi-
cal interaction, in the form of motions and/or applied external forces, is indicative of the
underlying dynamics that governs it. In this study we consider the cases of passive interac-
tion, where an object free-falls under gravity, and active interaction, where known external
perturbations act on an object at contact. We assume that both object and environment
are planar and rigid, and exploit the well-known complementarity formulation for contact
resolution to establish a constrained optimization-based problem to estimate inertial pa-
rameters and contact forces. We also show that when contact modes are known, or guessed,
the formulation provides a closed-form relationship between inertial parameters, contact
forces, and observed motions, that turns into a least squares problem.

Consistent with intuition, the analysis indicates that without the application of known
external forces, the identifiable set of parameters remains coupled, i.e., the ratio of mass
moment of inertia to mass and the ratio of contact forces to the mass. Interestingly the
analysis also shows that known external forces can lead to decoupling and identifiability
of mass, mass moment of inertia, and normal and tangential contact forces. We evaluate
the proposed algorithms both in simulation and with real experiments for the cases of a
free falling square, ellipse, and rimless wheel interacting with the ground, as well as a disk
interacting with a manipulator.

1 Introduction

Autonomous manipulation in an uncertain environment can benefit from an explicit under-
standing of contact. The a priori models of objects and environment that robots rely on are
inevitably deficient or defective: In some cases it is not cost-e↵ective to build accurate models;
in others the complex and transforming nature of nature makes it impossible. This understand-
ing of contact is often made implicit in the design of a manipulator. We deal with uncertainty
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Figure 1: Is the trajectory of the rod in the figure indicative of the dynamic system that governs
its motion? Note the two key events: When the left end of the rod makes contact and sticks to
the ground, and the subsequent contact when the right end of the rod contacts the ground and
slides. Stewart and Trinkle [30] used the example of a falling rod to introduce a time-stepping
complementarity scheme for contact resolution that has become one of the standard techniques
for simulating frictional contact. In this paper we look at the same formulation and similar
examples from the perspective of identification.

by carefully choosing materials and geometries. However, when we want to monitor or actively
control the execution of a manipulation task, an explicit understanding of the algebra between
motions, forces, and inertias at contact is principal.

We are inspired by humans’ unconscious but e↵ective biases that make sense of contact to
understand their environment. It only takes us a small push to a cup of co↵ee to estimate how
full it is, and a quick glance to a bouncing ball to gauge its sti↵ness. Similarly, this work aims
for robots to harness known laws of physical interaction to make sense of observed motions
and/or forces, and as a result gain a better understanding of their environment and themselves.

In particular, in this study we explore the identifiability of inertial parameters and contact
forces associated with planar frictional contact interactions. We exploit the linear complemen-
tarity formulation (LCP) of contact resolution (Stewart and Trinkle [30], Anitescu and Potra
[1]) to relate inertial parameters, contact forces, and observed motions. Section 3.1 reviews in
detail the structure of an LCP problem and describes the mathematical framework necessary
to outline the identifiability analysis.

What can we say about an object from observing its motions and/or forces? One specific
type of system we consider is a single planar rigid body undergoing impact after a period of free
fall, as in Figure 1. The trajectory of the rod is a ballistic motion following the dynamics of free
fall, which are not too informative. The relevant events are when the left end of the rod makes
contact and ”sticks” to the ground, and when the opposite end makes contact and ”slides” on
the ground. The key challenge, and focus of this paper, is in finding a formulation suitable for
system identification, that can handle the complexity of contact dynamics with unknown and
intermittent reaction forces due to frictional contact. Such a formulation provides the basis of
an approach for identification in a broader set of contact interactions.

Our main contribution is an analysis of the question of the identifiability of the mass,
the moment of inertia, and contact forces from kinematic observations of frictional contact
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interactions. Section 4 details that analysis both for cases when contacts stick or slip, as
well as when known external forces are applied during contact. In this paper we use a batch
approach to system identification, that estimates the inertial parameters and contact forces
that explain a window of observations. A potential benefit over more traditional calibration
methods for parameter fitting, is that equivalent on-line techniques are well understood and
readily available.

Section 5 and Section 6 demonstrate the validity of the approach through simulated and
real experiments on single contact events, with a planar square, an ellipse, and a rimless wheel
free-falling against a flat ground, and with the multiple-contact scenario of a manipulator
interacting with a disk rolling on the ground.

2 Background & Motivation

System identification studies the problem of fitting a model (i.e., inertial parameters) to a series
of inputs (i.e., forces and torques) and responses (i.e., displacements/velocities/accelerations)
of a dynamic system. The basic idea behind system identification is that, although the response
of a dynamic system tends to be complex, the governing dynamics are often linear in a set of
observable parameters. For example, while

P
f = m·a can lead to complex trajectories, forces

and accelerations are still linearly related by the mass m. In unconstrained dynamic systems,
this allows closed-form least-squares formulations for the estimation of those parameters.

System identification determines what parameters, or combinations of parameters, are in-
strumental to a particular dynamic system, what observations are informative, and how to
excite the system to trigger those observations, ultimately yielding estimates of the param-
eters. This idea has been applied in robotics to the identification of serial and parallel link
manipulators [14, 17], and to identify inertial parameters su�cient for control purposes [29]
among others.

In robotic manipulation, we often rely on dynamic models of impact and frictional interac-
tion by assuming known masses, inertias, and coe�cients of friction or restitution. For example
many algorithms for contact-aware state estimation (Erdmann [12], Atkeson [3], Koval et al.
[20], Zhang and Trinkle [36], Yu et al. [34]), use a dynamic model to filter noisy observations
of state. Zhang et al. [37] studies the problem of simultaneously estimating state and inertial
and frictional parameters in a planar pushing task. Our work characterizes what parameters
can actually be estimated from the type of interaction and the available information. Ayu-
sawa et al. [4] exploit the particularities of floating base robots to simplify the estimation of
their inertial parameters. This work focuses on dealing with the issues that originate from the
hybridness of making and breaking contact.

Close to our work, Kolev and Todorov [19] develop a similar approach to estimating inertial
parameters, based on a physics engine with smoothed contact dynamics, leading to compu-
tationally e�cient algorithms. More recently, in the context of a planar pushing task, Zhou
et al. [38] propose to constrain the search for dynamic models to a convex polynomial rela-
tionship between forces and motions. The assumption, motivated by the principle of maximal
dissipation and the concept of limit surface (Goyal et al. [15]), yields a data-e�cient algorithm.

Algorithms for planning and control of dynamic manipulation through contact (Lynch
and Mason [22], Platt and Kaelbling [25], Posa et al. [26], Chavan Dafle and Rodriguez [8],
Hogan and Rodriguez [16]) also rely heavily on known dynamic parameters to make prediction
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for given control inputs. Dynamic models are also widely used for fault detection and task
monitoring, although to a lesser degree within the context of frictional contact. Willsky [33]
provides an early review of methods to detect and diagnose changes in the evolution of a
system from its expected behavior, where the expected behavior can be specified as following
a particular parametrized dynamic model (Barai and Pandey [5], Salawu [28], De Luca and
Mattone [10]) or data-driven model (Tax et al. [32], Rodriguez et al. [27]). Recently, Manuelli
and Tedrake [23] propose to use a particle filter based scheme to estimate and localize external
contacts to explain unexpected internal torques in a floating base mechanism like a humanoid.
In all these cases, system identification has the potential to provide a formal approach to
extract estimates of system parameters and contact forces from observations of rigid-body
contact interactions.

The main design choice in our approach is the selection of a time-stepping Linear Com-
plementarity Problem (LCP) scheme for the resolution of forces and accelerations (or rather
impulses and velocities) during frictional contact. Why LCP? Brogliato et al. [7] identifies 3
classes of methods for rigid body simulation:

i. Penalty methods approximate contact interactions by allowing interpenetration of bod-
ies and generating forces proportional to the amount of penetration, yielding smooth
yet sti↵ systems that can be solved with integration methods. These methods yield
computationally favorable solutions at the cost of realism.

ii. Event-driven methods rely on a listing, resolution, and selection of all possible con-
tact/impact events. They typically require some knowledge of contact time which may
be di�cult to predict a priori for complicated multi-body systems.

iii. Time-stepping methods integrate the equations of motion during a finite time interval.
Should a contact (or multiple) be detected during the interval, the algorithm resolves the
collisions and continues to integrate the equations of motion.

The time-stepping approach, in conjunction with the velocity-impulse resolution of contact,
which results in a Complementarity Problem (CP), has been advocated by Stewart and Trinkle
[30] and Anitescu and Potra [2] among others, and has been shown to be robust to phenomena
such as Painleve’s problem [31], and to always yield a solution, with linear approximations
of the friction cone. Specially interesting for this work, LCP, or CP in general, provides a
unique consistent formulation over di↵erent contact modalities, i.e., contact vs. separation
and sticking vs. slipping.

3 Complementarity Problems for Collision Resolution

The standard approach to resolve motion in unconstrained dynamic systems follows an iterative
integration scheme:

Current state �! Compute resultant
of applied forces

�! Integrate forward
to next state

A key di�culty in dealing with the constraints induced by rigid body contact dynamics, as
in many constrained dynamical systems, is that it breaks this approach. From an algebraic
perspective, forces and states must be consistent with the constraints, which complicates their
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resolution. From a mechanical perspective, the motion of the system depends on the resultant
of applied contact forces, while these applied contact forces (friction and contact normal) also
depend on the motion of the system. Normal forces are only present if the system wants
to move into contact. Equally, tangential friction forces depend on the relative motion at
contact. For example, at a sliding point contact the direction of friction opposes the direction
of sliding. This direction, however, is determined by the resultant of forces, including friction.
As a consequence, both contact forces and resulting motions must be determined (searched
for) simultaneously, instead of sequentially.

Penalty methods, by approximating contact forces as a measure of interpenetration, e↵ec-
tively can turn contact resolution back into the iterative integration scheme above. Methods
that rely on contact enumeration search the space of motions and forces by decomposing all
possible types of contact configurations each yielding a di↵erent model of contact forces.

This section reviews the complementarity formulation for contact resolution, a formulation
that yields a consistent set of equations of the dynamics and constraints of contact, at the
cost of increased algebraic complexity. The derivations in this section draw from Stewart and
Trinkle [30] and Stewart [31], to which we refer the reader to for further detail.

3.1 A Linear Complementarity Problem

A general (i.e. nonlinear) complementarity problem is defined as:

Find z (1)

s.t. z � 0

g(z) � 0

z · g(z) = 0

The basic idea behind a complementarity problem is to encode two mutually exclusive
conditions on z. In the simple formulation above, we need to find a vector z that satisfies the
two conditions z � 0 and g(z) � 0, these being exclusive z · g(z) = 0, i.e., at least one of
them must be 0. We see this often written in compact form as 0  z ? g(z) � 0.

A linear complementarity problem (LCP) is formed when the constraint function g is linear
g(z) = ⇤z + b. Since their development in the 1960s [9], these formulations have found a
wide application range. The complementarity conditions in Equation 1 arise naturally when
setting up Lagrange multipliers for optimization problems with inequality constraints, and
is a classical problem in optimization theory. In 1996 Pang and Trinkle [24] presented an
algorithm based on LCP and an approximated version of Coulomb’s frictional law to predict
the instantaneous acceleration of a system of rigid bodies undergoing frictional contact. In
this context, complementarity naturally encodes constraints such as the exclusivity between
the magnitude of a contact force and the distance to contact (at all times one of them has to
be zero), or between the magnitude of the sliding velocity at contact and the magnitude of
the frictional force (either the sliding velocity is zero, or the frictional force has to reach the
maximum determined by Coulomb’s law). Provided algorithms exist to e�ciently solve LCP
problems, the formulation allows us to search the space of motions and forces without having
to enumerate contact modes.

The equation of motion resulting from force balance for a single frictional contact can be
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written as:

M(q)
dv

dt
+C(q,v)v = g(q) + f

ext

(q) + JT

n

(q)c
n

+ JT

t

(q)c
t

(2)

where q and v are respectively the joint configurations and velocities. The left side encodes
the motion of the system where:

· M(q) is the (positive-definite) inertia matrix defined in joint space.

· C(q,v)v represents the centrifugal and Coriolis accelerations.

and the right-hand side is the resultant of all applied forces:

· g(q) is the resultant of all conservative forces (only dependent on configuration). In this
paper we only consider gravity, but it can also incorporate forces due to the deformation
of non-rigid bodies.

· f
ext

(q) is the resultant of all generalized external non-conservative forces, excluding con-
tact.

· JT

n

(q)c
n

is the contact normal force in an inertial reference frame, where c
n

is its mag-
nitude. JT

n

(q) = r�
n

(q)T is the gradient of a scalar “distance-to-contact” function
�
n

(q) that determines the boundary between no contact (�
n

(q) > 0) and penetration
(�

n

(q) < 0). Evaluated at contact (�
n

(q) = 0), it gives the outward normal to the
contact surface in an inertial reference frame.

· JT

t

(q)c
t

is the contact frictional force in an inertial reference frame, where c
t

is a mag-
nitude along each basis vector in JT

t

(q). The columns of JT

t

(q) form a linear span of
the tangent space at contact. Note that the combination of the columns in JT

t

(q) with
JT

n

(q) gives a full linear basis, or reference frame, at a contact.

Equation 2 is an unconstrained dynamic system with forces c
t

, c
n

as inputs. We can change
the pose q of an object by choosing the geometry of contact J

n

(q),J
t

(q) and by controlling the
magnitude of the contact forces c

t

, c
n

. In this context, classical system identification would
provide a well-understood process to estimate problem parameters and forces, leading to a
least-squares problem formulation [21], as we will see in examples in Section 5.

Unfortunately, without making assumptions about the interaction mode, c
t

and c
n

are
constrained, and depend both on each other and on the states (q,v). They are constrained by
motion principles and by frictional laws. First, the magnitude of the normal force c

n

should
always be positive, and di↵erent than zero only at contact, �

n

(q) = 0. At the same time, the
distance to contact should always be positive, and zero only when in contact. We can write
both conditions compactly as the complementarity constraint 0  �

n

(q) ? c
n

� 0. Second,
the motion at contact and the tangential frictional force J

t

(q)c
t

are related by the maximum
power inequality [1]. This states that during contact the selection of motion and frictional
forces is resolved to maximize power dissipation, which we have seen experimentally to be a
good approximation in tasks such as pushing (Yu et al. [35]) or prehensile pushing (Kolbert
et al. [18]):

min
c
t

v · JT

t

(q)c
t

s.t. (c
n

, c
t

) satisfy friction law (3)

In practice, and in simple cases such as point contacts, contact resolution searches for the
components of c

t

such that the frictional force J
t

(q)c
t

maximally opposes the instantaneous
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sliding velocity v from within a valid domain of contact forces. That domain is specified by
a frictional law, which constrains the normal and tangential components of the contact force,
and is commonly represented by an inequality constraint  (c

t

)  µc
n

, with µ as the scalar
coe�cient of friction and  (·) a scalar function. In this case Equation 3 looks like:

min
c
t

v · JT

t

(q)c
t

s.t.  (c
t

)  µc
n

(4)

Note that Coulomb’s law is the special case when  (c
t

) = ||c
t

||
2

, i.e., all contact forces
must lie inside the friction cone FC(q) = {JT

n

(q)c
n

+ JT

t

(q)c
t

s.t. ||c
t

||
2

 µc
n

}. We can
incorporate this constraint in the minimization in Equation 4 through a Lagrange multiplier
�, where we minimize now h(c

t

,�) = vT · JT

t

(q)c
t

� �(µc
n

�  (c
t

)) with respect to both c
t

and �. The conditions for optimality for a minimization problem with inequality constraints
are known as the Karush-Kuhn-Tucker conditions [6]:

@h

@c
t

= J
t

(q)v + �
@ (c

t

)

@c
t

= 0 (5)

� � 0

µc
n

�  (c
t

) � 0

� · (µc
n

�  (c
t

)) = 0

which are the origin of the algebraic expression of the complementarity conditions.
We can then complete the complementarity formulation for contact resolution (for one

point contact) as:

dq

dt
= v (6)

M(q)
dv

dt
+C(q,v)v = g(q) + f

ext

(t) + JT

n

(q)c
n

+ JT

t

(q)c
t

Subject to: 0 = J
t

(q)v + �
@ (c

t

)

@c
t

0  �
n

(q) ? c
n

� 0

0  � ? (µc
n

�  (c
t

)) � 0

It is possible to add an extra constraint J
n

(q) · (v+ + ✏v) = 0 when �
n

(q) = 0 to model the
elasticity of the contact, where ✏ denotes the coe�cient of restitution and v+ the post contact
velocity. For the perfectly inelastic case, ✏ = 0, the constraint turns into J

n

(q)v+ = 0 when
�
n

(q) = 0 which simply zeroes the normal component of the velocity after contact.
The optimization problem in Equation 6 is nonlinear, due to the friction surface function

 . For computational reasons, it is common to linearize the friction cone by approximating
it as a polyhedral convex cone. We construct it by using a finer discretization of the tangent
space at contact with a set of vector generators {d

i

(q)}
i=1...m

that positively span it. It will
be convenient to chose these vectors equispaced and paired to each other d

i

= �d
j

as in
Stewart and Trinkle [30]. We then stack this larger set of generators in the same matrix
JT

t

(q) with which we can express any frictional force as a positive linear combination JT

t

(q)c
t

with c
t

� 0, subject to the approximated Coulomb’s frictional law  (c
t

) =
P

m

i=1

c
t,i

 µc
n

where c
t

= (c
t,1

. . . c
t,m

), and under the complementarity condition that c
t

� 0. Applying this
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approximation we can write:

dq

dt
= v (7)

M(q)
dv

dt
+C(q,v)v = g(q) + f

ext

(t) + JT

n

(q)c
n

+ JT

t

(q)c
t

Subject to: 0  c
t

? J
t

(q)v + �e � 0

0  �
n

(q) ? c
n

� 0

0  � ? (µc
n

�
mX

i=1

c
t,i

) � 0

where e is a vector of all ones, that originates when di↵erentiating  (c
t

) =
P

m

i=1

c
t,i

with
respect to c

t

. In the rest of the paper we will focus on the specific case of planar contacts, i.e.,
at every contact there are only two generators m = 2 of the polyhedral friction cone spanning
the tangent space, both opposite to each other. Note that in practice, this is equivalent to
using the true Coulomb friction cone, but it better generalizes for higher dimensions.

3.2 A Time-Stepping Approach

Shortly after Pang and Trinkle [24] introduced the instantaneous LCP formulation for con-
tact resolution in the space of forces and accelerations, Stewart and Trinkle [30] proposed a
time-stepping formulation in the space of impulses and velocities which added stability and
e↵ectiveness for forward simulation. The resulting equations of motion and constraints are
based on a discretization of Equation 7 and follow from Stewart [31]. For the particular case
of one contact in the plane we can write them as:

qk+1 � qk = hvk+1 (8)

M(qk+1)
⇣
vk+1 � vk

⌘
+C(qk+1,vk+1)vk+1 = g(qk+1) + fk

ext

+

+ JT

n

(qk+1)c
n

+ JT

t

(qk+1)c
t

0  c
t

? J
t

(qk+1)vk+1 + �e � 0

0  �
n

(qk) ? c
n

� 0

0  � ? µc
n

� (c
t,1

+ c
t,2

) � 0

where superscripts k and k + 1 denote discretized time. Note that the first constraint is a
vector with one complementarity constraint for every generator of the contact tangent space
J
t

, all sharing the same Lagrange multiplier �.
The particular time-stepping method used in Equation 8 is based on an implicit Euler

integration scheme, but can be adapted to other methods. To simulate forward a single-
contact rigid-body frictional interaction between two rigid bodies, we need to solve the set of
equations and complementarity constraints in Equation 8. To do so, we search for the velocity
of the object vk+1 and consistent values of the contact forces c

n

, c
t,i

that step the system from
instant k to instant k + 1.

The search is also over the values of the extra variables introduced to formulate the comple-
mentarity constraints, � and �, which determine the contact mode, i.e., contact vs. no-contact
and sticking vs. slipping. We will exploit this in the following sections for the purpose of
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Figure 2: Distance to contact. For a planar object falling on a horizontal surface aligned with
axis X, we consider the distances �

n

and �
t

between the closest point to the ground P and
the origin O of a fixed reference frame. Following Equation 9, the coordinates of point P are
given by the configuration of the object q = (x, y, ✓), the angle �, and the distance l(�).

parameter and force estimation. We emphasize that if the contact mode is known or assumed,
there is no need to solve the LCP. In that case, impulses during impact and velocities post-
impact can be solved strictly as functions of states and external influences pre-impact. We
will use this in Section 4.3 and Section 4.4 to find closed-form relations between impulses,
velocities, and inertial parameters.

3.3 Regarding the Distance Function �
n

(·)

The function �
n

(·) measures the minimum distance between the boundaries of two interacting
rigid bodies (or a body and the environment). The particular form of that function depends
on the geometry of the problem.

Consider the example in Figure 2 of a rigid object falling under gravity on a fixed ground.
The function �(q) = (�

n

,�
t

) parametrizes the position of point P (closest to the ground) in
an inertial reference frame. The object is in free space if �

n

> 0, in contact if �
n

= 0, and in
penetration if �

n

< 0. We can write � as:

� =


�
n

�
t

�
=


y � l(�) cos (� � ✓)
x� l(�) sin (� � ✓)

�
(9)

where � parametrizes the contact point P in an object-fixed reference frame, and l(·) parametrizes
the object boundary. In an inertial reference frame, the closest point P is also a function of
the orientation of the object ✓. the geometry of contact is then given by the function �(✓)
defined in the interval 0  �(✓) < 2⇡.

The equation of motion derived in the previous section requires the Jacobian of the distance
function in Equation 9:

J =
@�

@q
=


J
n

J
t

�
=


0 1 J

y

(✓)
1 0 J

x

(✓)

�
(10)
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with

J
y

= �@�
@✓

✓
@l

@�
cos(� � ✓)� l sin(� � ✓)

◆
� l sin(� � ✓)

J
x

= �@�
@✓

✓
@l

@�
sin(� � ✓) + l cos(� � ✓)

◆
+ l cos(� � ✓)

where the rows of J , or columns of JT , can be seen as a mapping projecting Cartesian contact
forces in the local contact frame to generalized forces in a global inertial frame.

4 Identifiability Analysis

In this section we study the identifiability of inertial parameters (masses and inertias) and
contact forces of rigid bodies making and breaking frictional contact with the environment. In
Section 4.1 we will briefly review the key concepts of identifiability analysis and what it means
for a parameter to be identifiable. The following subsections will discuss the application of
this analysis to the problem of planar rigid body contact.

4.1 Key Concepts in Identifiability Analysis

System identification is a well developed field, with many excellent texts [21], which we make
use of here. In its barest form, system identification seeks to answer two questions, i) what is
the set of parameters from a dynamical system that we can hope to estimate (identifiability)
given su�cient observations, and ii) how to estimate them (identification). In this paper we
study a special class of systems in which the inputs and outputs are related through a linear
set of parameters. This class of systems has been shown to include a large set of rigid body
robotic systems [17].

To illustrate the principles of system identification, consider the following 1 D.O.F. dynamic
system subject to a harmonic excitation with a known magnitude a and frequency ! (a.k.a.
Du�ng oscillator):

mẍ+ cẋ+ k
1

x+ k
2

x3 = a cos(!) (11)

for which the parameter set ✓ = [m, c, k
1

, k
2

]T is unknown. We can relate observations of the
input force (excitation) a cos(!) and states (ẍ, ẋ, x) to the unknown parameter set as:

⇥
ẍ ẋ x x3

⇤
· ✓ = a cos(!) (12)

or more generally,

Y (ẍ, ẋ, x) · ✓ = f (13)

where Y is a non-linear function of the observed state, ✓ is the parameter set, and f is the
known input. Equation 13 has a linear regression form, and given N observations of (Y ,f)
with N larger than the dimension of ✓, we will be able to estimate ✓, assuming the matrix
Y is su�ciently well conditioned. In this formulation, the identifiable set is ✓ which can be
estimated by solving a least squares problem. In this work, the inputs are contact reaction
forces. This does not change the form of the identifiability problem, or the identifiable set,
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rather it will a↵ect our ability to generate informative trajectories, since we do not have direct
control over those contact forces, which ultimately a↵ects the structure of the matrix Y , as
further described in Section 7.3.

It is interesting to note that if we eliminate the excitation and apply initial conditions to
the system then the linear regression formulation can be written as:

⇥
ẋ x x3

⇤
✓̂ = �ẍ (14)

where ✓̂ = [ c
m

, k1
m

, k2
m

]T . The parameters of the original system are now coupled to each other
and not distinguishable, i.e. the identifiable set is lower dimensional.

In the discussion so far we have not considered constraints on the dynamics of the system.
This is only the case when the contact mode is constant and known. The rest of this section is
dedicated to the study of the identification problem for systems that make and break contact,
in which we need to explicitly handle constraints and changing contact modes.

4.2 Parameter and Contact Force Estimation Through Contact

Identifiability analysis starts by writing the left-hand side of the dynamic equation of motion
in Equation 8 in linear form Y (q,v, v̇) ·✓, with the parameter vector ✓ called the base inertial
parameters. The structure of the base inertial parameters depends on the geometry of the
problem, and dictates what can or cannot be identified or estimated. It is often the case that
the parameters we want to estimate are coupled [21]. In this section we study the problem
of determining and estimating the base inertial parameter set and contact forces with no a
priori assumption on contact modes. In followup subsections we will make assumptions on
the contact mode to show insights into how the identifiable set changes given the presence or
absence of known excitation.

Recalling Equation 8 we can write the dynamic equation of motion between two time steps
k and k + 1 as:

qk+1 � qk = hvk+1 (15)

Y (qk+1,vk,vk+1, h) · ✓ = fk

ext

+ JT

n

(qk+1)c
n

+ JT

t

(qk+1)c
t

subject to a set of constraints, where we note that we incorporated gravity g(qk+1) on the
left-hand side of the equation. For compactness of notation, we introduce the vectors:

JT

c

(q) =
⇥
JT

n

(q) JT

t

(q)
⇤

(16)

cT = [c
n

c
t

]T

where JT

c

(q) projects Cartesian space forces into joint space generalized forces. We can then
rewrite Equation 15 as:

qk+1 � qk = hvk+1 (17)

Y (qk+1,vk,vk+1, h)✓ = fk

ext

+ JT

c

(qk+1)c

We assume we have access to a time-limited window of noisy observations of the state of
the system {q1 . . . qm} and we are interested in estimating the values of the base parameters ✓
and contact forces {c1 . . . cm} that best explain that series of observations. Figure 3 illustrates
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Trajectory Observation

Window of      observations

Contact Event

m

Figure 3: A disk transitions from free flight to rolling contact. The solid line denotes the true
trajectory of the disk, and the dots denote observations corrupted by sensor noise. Given an
observation window of length m we want to estimate the inertial parameters of the ball ✓ and
the contact forces {c1 . . . cm} for the duration of the window.

an example problem where a disk comes into contact with a rigid surface. The true trajectory
of the disk is shown with a solid line, and the noisy observations qi are depicted with circles.

We use r to denote the dimension of the parameter space, ✓ 2 Rr. We use p to denote the
number of generators in the linear approximation of the friction cone, so we can express the
contact force with p + 1 positive numbers, c 2 (R+)p+1, one for the normal force and p for
the tangent force. The total number of parameters we want to estimate is then r +m(p+ 1),
which for the planar examples in this paper becomes r + 3m.

In this section we use the example of a single planar body and a single point contact to
illustrate the formulation. We will describe and estimate its base parameters, as well as the
magnitude of the normal and friction forces c

n

, c
1

and c
2

. We find the most likely estimates of
✓ and {c1 . . . cm} by minimizing their fit to the time-stepped dynamic equation of motion and
the series of constraints in Equation 8. The equations of motion must be satisfied in between
any two sequential observations k and k + 1, and the constraints must be satisfied at all m
time-steps in the window. This takes the form of a nonlinear optimization problem, in a similar
fashion to recent approaches for trajectory optimization through contact (Posa et al. [26]):

min
✓,c1..cm,�

����f
k

ext

�
h
Y (qk+1,vk,vk+1, h) � JT

c

(qk+1)
i  ✓

ck+1

�����
2

(18)

s.t: 0  ck+1

t

? J
t

(qk+1)vk+1 + �k+1e � 0 8k = 1..m

0  �
n

(qk) ? ck+1

n

� 0 8k = 1..m

0  �k+1 ? µck+1

n

� (ck+1

t,1

+ ck+1

t,2

) � 0 8k = 1..m

where we have one complementarity constraint modulated by the distance to contact �
n

(qk),
one complementarity constraint modulated by the magnitude of the relative velocity at contact
�k+1, and two complementarity constraints, each modulated by the force along the correspond-
ing generators of the contact tangent plane ck

t,1

and ck
t,2

.
Note that the regressor matrix Y and the parameter vector ✓, have been appended with the

contact Jacobian and the contact forces respectively. The constraints resolve the contact mode
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and enforce physically realizable values for the contact forces as well as the inertial parameters.
We will see in following subsections that assuming we know exactly the mode of contact, we
can neglect the constraints and get back to the unconstrained linear least squares formulation
described in Section 4.1. Before, we list a few important observations regarding the nonlinear
problem in Equation 18:

· We assume we can directly observe or estimate the applied external forces fk

ext

, the kine-
matic matrix

⇥
Y (qk+1,vk,vk+1, h) � JT

c

(qk+1)
⇤
, the distance �

n

(qk), and the velocity
at contact J

t

(qk+1)vk+1. In practice, these are estimated by numerically di↵erentiating
observed states qk and by assuming knowledge of the geometry of the object and the
environment.

· If f
ext

is su�ciently rich, and the system is in contact, then the identifiable set is the full
vector ✓ as well as all contact forces. The state dependant contact constraints do not
a↵ect the base inertial parameter set, they instead impose that the estimated contact
forces and identified parameters are physically consistent. The contact forces a↵ect the
dynamics linearly and so can be folded into the linear parameter formulation discussed in
Section 4.1. It is important to note that the identification is only e↵ective if the external
forces are informative enough to excite the complete spectrum of dynamics of the system
considered (Section 7.3).

· In the case f
ext

= 0, i.e., there is no known external actuation on the system for the
duration of the motion, Equation 18 becomes homogeneous, and the optimization reduces
to a singular value problem. The contact forces cannot be found independently of the
parameter vector ✓ and only a ratio of the two can be found, as in the example discussed
in Section 4.1.

· The gravitational force g(qk+1) does not yield additional information with respect to the
identifiability of inertial parameters. This is because the gravitational term is linear in
inertias, which are consequently proportional to accelerations. An intuitive example is a
free falling object where m · g = m · a, observing its motion is not informative about its
mass.

· When there is no contact, i.e., �(q) > 0, all constraints are satisfied trivially, and the
nonlinear optimization problem becomes again linear least squares regression over the
parameter vector ✓. This is the case for several seminal works on system identification
applied to robotics [17, 29].

The optimization program in Equation 18 is formulated to deal with unknown contact
modes, this is critical since in practice these modes are often not known beforehand. In the
following subsections, we gain insight by focusing on a single rigid body making contact with
a rigid flat surface and solve away the complementarity constraints for the cases of sliding
(Section 4.3) and sticking contact (Section 4.4), both leading to the same set of identifiable
parameters.

4.3 Parameter and Contact Force Estimation For a Sliding Contact

Here we assume that the system of interest is a single rigid body making contact with a flat
surface and assume it is in sliding contact mode during the window of observation. This
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breaks the hybridness of the dynamics of intermittent frictional contact, and will resolve the
complementarity constraints. During sliding, these complementarity constraints become:

ck
n

> 0 �k > 0 ck
t

> 0 (19)

where ck
t

is ck
t,1

or ck
t,2

, depending on whether the object is sliding to the right or the left.
The choice of contact mode turns the problem into an unconstrained optimization. Ex-

panding Equation 18 with the general expressions in Equation 8, and rewriting the linear
system with c

n

, c
t

and � as variables, we obtain:

2

4
JT

n

M�1J
n

JT

n

M�1J
t

0
JT

t

M�1J
n

JT

t

M�1J
t

1
µ �1 0

3

5

2

4
ck
n

ck
t

�k

3

5 = �

2

4
JT

n

b
JT

t

b
0

3

5 (20)

where:

b = vk + hM�1(�G(qk)� C(qk, vk) + F k

ext

)

Expressions for all other terms are provided in Appendix A. Solving the linear system of
equations for c

n

and c
t

we can write:

ck
n

= m
vk
y

+ ✓kJk

y

� hg + h

m

(F k

y

+ hm

I

F
✓

)

1 +
⇣
Jk

y

2 + µJk

x

Jk

y

⌘
m

I

=
ck
t

µ
(21)

which solves contact forces as functions of the inertial properties, geometry of contact, and
kinematic measurements. We replace the expressions for normal and tangential contact forces
back into the equations of motion, yielding:

2

4
vk+1

x

� vk
x

vk+1

y

� vk
y

+ hg

vk+1

✓

� vk
✓

3

5 =
vk
y

+ vk
✓

Jk

y

� hg + h

m

(F k

y

+ hm

I

F k

✓

)

1 +
⇣
Jk

y

2 + µJk

x

Jk

y

⌘
m

I

2

4
µ
1

m

I

�
Jk

y

+ µJk

x

�

3

5+ h

2

664

F

k

x

m

F

k

y

m

F

k

✓

I

3

775

(22)

Recalling from Section 4.1 in order to study the identifiability of the system making contact
we need to manipulate this expression into a linear form in the unknown parameters. With
some algebraic manipulation, we can write Y · ✓ = f , with:

Y (q,v,f
ext

) =

2

664

y
1

(q,v)
y
2

(q,v,f
ext

)
y
3

(q,v,f
ext

)
y
4

(q,v,f
ext

)

3

775

T

✓ =

2

664

m

I

1

m

1

I

m

I

2

3

775
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The complete expressions are provided in Appendix A. This linear mapping f = Y · ✓ in the

base parameters ✓ =
⇥
m

I

1

m

1

I

m

I

2

⇤
T

indicates that this is indeed the identifiable set (Section 4.1),
i.e. that provided we have su�ciently rich external excitation (Section 7.3), we can estimate m
and I independently. To estimate these parameters we collect N data points of the states and
external forces and solve a linear least squares optimization to evaluate the mass and inertia
of the object then plug the values found back into Equation 21 to find the contact forces.

Note that Y depends both on the states and the external forces. The second, third, and
fourth columns are linear functions of the external forces whereas the first column is function
only of states. This implies that if there is no known external excitation during the contact then
y
2

(·) = y
3

(·) = y
4

(·) = 0 and only the first column of the Y matrix provides any information.
Consequently we can only estimate the first element of ✓, that is the ratio of the mass to the
inertia m

I

. Equation 21 then yields the ratio of the contact forces to mass c
t

m

and c

n

m

.

4.4 Parameter and Contact Force Estimation For a Sticking Contact

Analogous to the sliding case, during sticking contact, the complementarity constraints in
Equation 18 become:

ck
n

> 0 �k = 0 ck
t

> 0 (23)

Expanding Equation 18 with the general expressions in Equation 8, and rewriting the linear
system with c

n

, c
t

and � as variables, we obtain:


JT

n

M�1J
n

JT

n

M�1J
t

JT

t

M�1J
n

JT

t

M�1J
t

� 
ck
n

ck
t

�
= �


JT

n

b
JT

t

b

�
(24)

Following the same strategy as in Section 4.3, we solve for c
n

and c
t

:


ck
n

ck
t

�
=

�m

1 + m

I

⇣
Jk

y

2 + Jk

x

2

⌘
"

1 + m

I

Jk

x

2 �m

I

Jk

x

Jk

y

�m

I

Jk

x

Jk

y

1 + m

I

Jk

y

2

#
·

·

vk
y

� hg + vk
✓

Jk

y

+ h

m

(F k

y

+ m

I

F k

✓

Jk

y

)
vk
x

+ vk
✓

Jk

x

+ h

m

(F k

x

+ m

I

F k

✓

Jk

x

)

�
(25)

We construct the linear mapping Y · ✓ = f , by replacing the last expression into the
equations of motion, yielding:

Y (q,v,f
ext

) =

2

664

y
1

(q,v)
y
2

(q,v,f
ext

)
y
3

(q,v,f
ext

)
y
4

(q,v,f
ext

)

3

775

T

✓ =

2

664

m

I

1

m

1

I

m

I

2

3

775

The detailed expressions for Y and f are in Appendix B. By a similar inspection as in the
previous section, we conclude that the inertial parameters m and I are uniquely identifiable in
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the presence of known external forces. We can then infer the value of the contact forces from
Equation 25.

In the case external forces do not exist y
2

(·) = y
3

(·) = y
4

(·) = 0, in which case only the
ratio of mass to the angular moment of inertia m

I

, and the ratio of contact forces to the mass
c

n

m

and c
t

m

are identifiable, consistent with the results in the sliding mode.

5 Identification for Single Body Interactions

In this section we demonstrate the application of the formulation in Equation 18 to several
examples, and show results with both simulated and experimental data. Section 5.1 describes
the application of the approach to single body interactions, in particular we set the focus on
objects falling under gravity. Section 5.2 describes three particular examples, an ellipse, a
square, and a rimless wheel, and we conclude the section with simulated (Section 5.3) and
experimental (Section 5.4) results.

5.1 Identification Formulation

Let q = (x, y, ✓)T be the state of the rigid body and v = (v
x

, v
y

, v
✓

)T its derivative. The state
of the object is then described by the vector (x, y, ✓, v

x

, v
y

, v
✓

)T . Consider a rigid body as in
Figure 2 falling under gravity with no external actuation. Equation 18 can be written as:

minimize
✓,ck1...m

������

2

4
vk+1

x

� vk
x

vk+1

y

� vk
y

vk+1

✓

� vk
✓

3

5� h

0

@

2

4
0
�g
0

3

5+
ck+1

n

m

2

4
0
1

m

I

Jk

y

3

5+
ck+1

t

m

2

4
1
0

m

I

Jk

x

3

5

1

A

������
2

(26)

subject to the same set of complementarity constraints as in Equation 18. Since there is no
external actuation, as discussed in the previous sections, the inertial parameters are coupled
to the contact forces and disambiguation is not possible. This fact may not be immediately
obvious from Equation 26 so we relate this formulation to the least squares formulation in
Section 4.3 and Section 4.4 by assuming a contact mode and solving away the complementarity
constraints to arrive at:

min
✓1

||Y · ✓ � f ||
2

(27)

where: f = vk+1

✓

� vk
✓

Y = (vk+1

x

� vk
x

)Jk

x

� (vk+1

y

� vk
y

+ hg)Jk

y

✓ =
m

I

where the vectors and matrices are now scalars and where only the ratio of mass to inertia is
identifiable. The solution of Equation 27 yields an estimate of m

I

. It is important to note that
the constraints of the optimization exist but now have to be solved implicitly (external detection
of contact events and transitions). If this is possible then the least squares approach can be
applied when contact occurs and the the ratio of contact forces to mass can be estimated
through a process of back substitution using the estimate of m

I

. The results in subsequent
sections rather use the formulation in Equation 26 with explicit complementarity constraints
and make no assumption over the contact mode.
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Figure 4: Parametrization of the contact geometry of a 2D square of side a.

5.2 Examples

So far we have not studied any particular contact geometry, and assumed that the contact
Jacobian is a su�cient representation of the body. Yet algebraic expressions are required to
compute that Jacobian as a function of the configuration of the object and its geometry. The
following subsections show examples of analytical expressions for a square, ellipse, and rimless
wheel which we will later use in simulated and real experiments.

5.2.1 2D Square

The square in Figure 4 models as a square with side length a, orientation ✓, center of mass
(x, y), mass m, and angular inertia I. The minimum distance from the square to the ground
is the minimum of the vertical distances from all vertex:

�
n

= min

 
2

6664

y � ap
2

cos(⇡/4� ✓)

y � ap
2

cos(⇡/4 + ✓)

y + ap
2

cos(⇡/4� ✓)

y + ap
2

cos(⇡/4 + ✓)

3

7775

!
(28)

The contact Jacobian is derived from di↵erentiating the distances in Equation 28 following
the expressions in Equation 11. Assuming the first vertex is the lowest (with � = ⇡/4 and
l = a/

p
2), and since curvature does not play a role, i.e., @�

@✓

= 0, the expression of the normal
and tangential Jacobians become:

J
n

(q) =
h
0 1 � ap

2

sin(⇡/4� ✓)
i

J
t

(q) =
h
1 0 ap

2

cos(⇡/4� ✓)
i

(29)

which we could have also obtained by directly di↵erentiating the distance function.

5.2.2 2D Ellipse

The ellipse in Figure 5 incorporates extra complexity due to its curvature. We will see that
the resulting contact dynamics are sensitive to orientation, because small perturbations can
produce large changes in contact location.
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✓
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�n

Figure 5: Parametrization of the contact geometry of an ellipse of major and minor principal
radii a and b.

We parametrize the perimeter curve of the ellipse by angle �. Denote the major and minor
radii of the ellipse with a and b, and its orientation with respect to a fixed reference frame by
✓. The relationship between � to ✓ is given by:

tan(⇡ � ✓) = � b

a
cot�

@�

@✓
= �a

b

1 + tan2(⇡ � ✓)

1 + cot2(�)
(30)

We now write the distance of any point on the perimeter of an ellipse from its center as:

l(�) =
abp

b2 cos2 � + a2 sin2 �

@l

@✓
=

ab(b2 � a2) sin 2�

2
p

(b2 cos2 � + a2 sin2 �)3
@�

@✓
(31)

Which allows us to find the expression for @l/@✓. By substituting in Equation 11 we can find
an expression for the Jacobian.

5.2.3 Rimless Wheel

The rimless wheel is a classical example of a very simple passive walker. Its stability and gait
cycles have been extensively studied. Here we demonstrate the application of parameter and
contact force estimation approach to a rimless wheel as it “walks” down an incline. We make
no assumption of sticking vs sliding motion. The formulation in Equation 18 applied to a
rimless wheel becomes:

min
✓,c1...m

������
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1
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(32)

where we are now summing over the contact forces at all legs/spokes, since all legs can make
contact with the ground. Note also the increase in complexity due to the fact that two simul-
taneous contact forces are possible.
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Figure 6: Parametrization of the contact geometry of an rimless wheel with six spokes. The
figure shows the contact distance for 3 possible contact points. .
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Figure 7: Example of a trace of an LCP simulation of a falling square.

5.3 Results from Simulated Data

In this section, we demonstrate the identification process with synthetic data for the square,
ellipse, and rimless wheel. To do so, we simulate the time-stepping LCP formulation in Equa-
tion 7 and add Gaussian noise to state observations.

In the simulation we use a unit mass (kg), coe�cient of restitution of 0.6 and a horizontal
flat rigid surface with coe�cient of friction 0.7. The ratio of mass m to angular inertia I
moment of inertia for the square and ellipse are 6 (m2) and 0.8 (m2) respectively.

To generate data we gave the bodies a random set of initial positions and velocities and
simulate their trajectory 100 times. Figure 7, Figure 8, and Figure 9 show traces of example
trajectories for the square, ellipse, and rimless wheel respectively. For motivation, note in
Figure 10 the dependence of the motion of the center of mass of the rimless wheel with its
total mass, clearly indicating that, unlike in free fall, the trajectory through contact contains
information regarding its inertial properties.

To test the robustness of the identification algorithm we add Gaussian noise o varying
magnitude ⇠ N (0,�2) to the simulated data (both to configurations q and velocities v). We
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Figure 8: Example of a trace of an LCP simulation of a free-falling ellipse. The smoothness
of the boundary of the ellipse leads to a more complex scenario, where the contact point can
evolve while sticking (i.e., rolling) or sliding.
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Figure 9: Example of a trace of an LCP simulation of a rimless wheel with (top) high friction
and (bottom) low friction between wheel and ground. The dark spokes show the contacts
that are (top) sticking and (bottom) slipping. The dynamics of the rimless wheel are very
dependent on whether contacts slip or stick. As we have argued, this is a key di�culty in
doing system identification.
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Figure 10: Dependence of the trajectory of the rimless wheel with its mass. Intuitively, the
trajectory contains information of its inertial properties.

Table 1: Identification of m

I

from simulated data
Mean Error ± std. Error (%) S.N.R. (dB)
Square
-0.02 ± 0.10 m2 0.3 40
-0.12 ± 0.31 m2 2.1 30
-0.66 ± 0.91 m2 11.0 20
-3.49 ± 1.37 m2 58.2 10
Ellipse
-0.03 ± 0.10 m2 0.3 40
-0.14 ± 0.44 m2 2.3 30
-0.71 ± 0.82 m2 11.7 20
-4.89 ± 1.94 m2 80.4 10

then use the corrupted signals to estimate m

I

following the formulation in Equation 26.
Table 1 shows the identification results for the square and ellipse, for di↵erent values of

the signal to noise ratio. The first column details the mean error and standard deviation in
predicting the value of I

m

, the second column denotes the percent error and the final column
denotes the signal to noise ratio. We see good agreement between the predicted and true
parameter with low levels of noise and a steady deterioration of prediction as noise is increased.
One particularly damaging deterioration that noise produces is the modification of the contact
geometry of the problem, of contact Jacobian. Poor evaluation of these variables results in
poor behavior identifiability.

The proposed algorithm can also estimate contact forces. We show an example with the
rimless wheel, in this case assuming we know its mass m, since we have already determined
that in the absence of external forces, these are coupled. Figure 11 shows the estimated profile
of the contact normal for an example where where the rimless wheel happens to roll without
sliding. the plot shows impacts from three di↵erent spokes.
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Figure 11: Estimation of the normal force during an impact of the rimless wheel with the
ground from simulated data. Note that three di↵erent spokes undergo impact, so we show the
reconstructed profiles for those three spokes.

5.4 Results from Experimental Data

In this section, we validate the proposed identification scheme with real data. To do so, we
constructed the experimental setup in Figure 12, in likeness to the simulation environment
used in the section above.

The dropping arena is constructed with two very flat sheets of glass with support spacers
to constraint the motion of a falling object in the vertical plane. The objects are 3D printed in
hard plastic, with shapes of a square of side-length 70 mms and of an ellipse with major and
minor axis lengths of 70 and 50 mms. We track the position of the objects with a Vicon motion
tracking system at 250Hz which proved accurate enough to extract velocity estimates by low-
pass filtering and di↵erentiation. To collect ground truth measurements of force we use an ATI
Gamma 6-axis force torque sensor with 1000 Hz sampling rate. For each drop experiment we
considered the first 3 bounces, which are extracted automatically using the impact signature
captured by the F/T sensor. Figure 13 shows an example of such a trajectory.

For the validation, we use the data from a total of 280 drop tests to estimate the ratio of
mass to inertia of the objects, as well as the peak contact forces at contact. For the case of the
ellipse, the ratio of mass to inertia was estimated as 587 m2 with a standard deviation of 27.6,
while the real value is 535 m2. The mean error in peak contact force estimation was -12.12 N
with a standard deviation of 31.59 N, there the average magnitude of the peak force was in
the order of 135 N.

Figure 14 shows an example of contact force estimation. The ellipse is shown as it comes
into contact with the surface, and the plot compares the estimated ground reaction force with
the profile captured by the force-torque sensor. Note that the contact force shows oscillations
post impact. This is due to vibrations induced on the ground after the first impact. To avoid
their e↵ects, we focus this analysis on estimate the timing and magnitude of the first impact.
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Figure 12: Experimental dropping setup. A six axis industrial robot latches magnetically on
a part, gives it some initial velocity and orientation, and drops it. A motion capture system
and a F/T sensor capture the falling motion at high frequency.

Figure 13: Example of a falling trajectory of a planar ellipse in the experimental dropping
arena. The figure shows a sub-sampled trajectory recorded by the motion tracking system.
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Figure 14: Reconstruction of the contact force for a impact of an ellipse. Note the oscillations
of the measurements of the real force in the experimental setup. This is due to the vibrations
induced after the first impact. It is a nuisance, so we focus on the ability of the algorithm to
estimate the timing and magnitude of the first impact.
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⌧1
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Figure 15: Schematic of the frictional interaction between a two-link manipulator, a disk, and
the ground. In this case we have two simultaneous contacts, which we need to model with their
correspondent rigid-body constraints, yielding, for example, two separate distances to contact
�
n1 and �

n2 .

6 Identification for Multi-Body Interactions

In this section we demonstrate the application of the technique to a multi-body, multi-contact
problem. Figure 15 shows a two link manipulator pushing a disk resting on flat ground.
During the motion the disk makes and breaks contact with both the manipulator and the
environment. Initially manipulator and disk are not in contact and the disk starts to drop
from a height, subsequently the two link manipulator makes contact with the disk and pushes
the disk against the ground, the disk begins to roll and slides its way out of the wedge formed
by the manipulator and ground.

The system has a total of five degrees of freedom (two rotational joints of the manipulator
and the position and orientation of the disk). Jointly with their velocities, these variables
make for a 10-dimensional state space. We assume a maximum of 2 possible contact pairs at
any given instant, the manipulator-ball pair and the ball-ground pair, and for each pair there
are the associated normal and tangential contact forces in the contact frame, as well as their
corresponding complementarity constraints. The control inputs are the joint torques of the
manipulator, and everything is under the influence of a vertical gravitational field.

We adopt the formulation in Equation 18 and assuming a window length of m, the total
number of parameters to estimate is 4m + 3 + 2 where there are 2m forces per contact pair,
3 base inertial parameters of the two-link manipulator and 2 base inertial parameters of the
ball. Note that the number of parameters to optimize grows linearly with the length of the
window and there will be an additional 2m per any new contact pair.

To simulate the experiment we initialize the manipulator and disk in a configuration similar
to Figure 15 and apply pre-determined torque profiles to the two-link manipulator. We log
the resulting states and contact forces generated. Next we use the recorded configurations
and torque profiles as inputs to Equation 18 along with the complementarity constraints to
estimate the contact forces and base inertial parameters. Figure 16 shows estimated contact
forces in the three directions between the disk and the manipulator overlaid with the simulated
values.
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Figure 16: Estimation of the normal force c
n

and two tangential forces c
t,1

, c
t,2

during the
brief interaction between the manipualtor and disk in Figure 15.

7 Practical Considerations

Practical implementation and uncertainty in measurements create interesting challenges. In
this section we discuss some important details to consider when applying the approach outlined
by this work.

7.1 Measurement Noise and Hard Constraints

The model we use in this paper for contact resolution assumes rigid contact. This yields several
hard constraints that take the form of equality constraints in the optimization problem. Even
if the objects and environment we use were to be perfectly rigid, sensor noise makes the
observations violate those constraints. For example, it is often the case that objects slightly
penetrate the ground, or that contact forces act at a sight distance from the ground, as shown
in Figure 17. As a consequence, imposing the complementarity constraints on to the observed
data proves challenging.

Ideally, one would want to do simultaneous state estimation and system identification, to
reduce sensor noise. However, that is an important but complex topic for future work. In
this work, we considered two possible solutions to alleviate this issue. The first is to employ
a projection algorithm that at the time of contact imposes that objects be on the contact
manifold. The second approach is to relax the strict equality and allow a slack proportional
to the uncertainty in measurements.

The implementation of the first approach requires knowledge or detection of contact events
which may be di�cult, and the second approach allows for application of force at a distance,
but the magnitude of such a force will be small. In our implementation we used the projection
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�n > 0

�n < 0

Figure 17: Noise in the pose measurement can lead to impacts happening in configurations that
do not lie on the contact manifold. The image shows an example were an ellipse is projected
(top) down or (bottom) up to satisfy the constraints of rigid contacts.

approach due to accurate knowledge of the ground elevation and relative high accuracy of
sensors.

7.2 Sample Rate Variation across Sensors

Force sensors and joint encoders usually sample at a higher frequency than tracking/vision
hardware. Our approach, however, assumes that during a window, sensor data is uniformly
sampled and synched. In the event that sensor data is not uniformly sampled it is the authors
experience that interpolation of the lower sample rate sensors works better than downsampling
of faster sensors. This avoids throwing fine detail information that might be present in the
high frame rate sensors, which is of special relevance for detecting contact events.

7.3 Persistence of Excitation

Persistence of excitation is a common consideration made when estimating parameters and
variables in the context of system identification [21]. It quantifies how much a signal “excites”
the dynamic modes of a system. We can build some intuition for this concept by considering
again the Du�ng oscillator discussed in Section 4.1:

mẍ+ cẋ+ k
1

x+ k
2

x3 = a cos(!)

If the amplitude and frequency of the excitation signal are both small, then the cubic sti↵ness
term has very little e↵ect on the output response of the oscillator and so estimates of the
sti↵ness parameter k

2

will be poor. More formally, consider the class of systems that are linear
in parameters f(t) = Y (t)✓, where ✓ is the unknown parameter vector, Y is the known state
dependant regressor matrix and f is a pseudo output vector. The persistence of excitation
criteria requires that:

↵I  1

T

Z
t+t

obs

t

Y (⌧)TY (⌧)d⌧
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Figure 18: Example of (a) non-rich and (b) rich excitations for a bouncing square. The case
of a vertical impact is indistinguishable from a point contact and hence it cannot possibly
give information about the angular inertia of the object. The geometry of contact, and the
corresponding regressor matrix Y is not full rank.

for the observed trajectories to be informative of the parameters to identify. The parameter ↵
is a chosen positive scalar and I denotes the identity matrix. Intuitively, this criteria quantifies
the positive-definiteness of the matrix Y (t)TY (t) over the window of observation of length t

obs

.
Loosely put, the importance of the positive definiteness of this matrix is due to the inversion
it undergoes in estimating the parameters over the time period.

Regarding the formulated nonlinear optimization Equation 18 the persistence of excitation
criteria sets conditions on the Y and J

c

matrices respectively. To be more illustrative, rather
informally we write:

⇥
Y (qk+1, vk, vk+1, h)� J

c

(qk+1)T
⇤ ✓

c

�
= F k

ext


✓
c

�
=
⇥
Y (qk+1, vk, vk+1, h)� J

c

(qk+1)T
⇤†
F k

ext

The pseudo inverse of the regressor matrix is well posed when the criteria for persistent
excitation of the signals is satisfied. Figure 18 shows an intuitive example, the contact of
a square against a flat surface. In the left image the square lands perfectly on one side
whereas on the right it lands at an angle. The left square will continue to bounce up and
down vertically without ever rotating, implying no information can be deduced regarding its
rotational inertia—in fact it cannot be distinguished from a point particle. The square on
the right rotates with various angular velocities as it bounces, which provides information
regarding its rotational inertia, so the excitation can be considered rich.

7.4 Rigidity of Interactions

The LCP formulation for contact resolution used in this paper assumes perfectly rigid bodies.
In practice, bodies are not perfectly rigid, which means that velocities will not vary instanta-
neously, but rather will be modulated by the compliance-deformation of the materials. The
formulation we presented is not adequate for systems that exhibit considerable compliance
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during contact. The contact model would need to be augmented to incorporate deformation,
which is an interesting line of research for future work.

8 Conclusions and Future Work

In this paper we study the problem of estimating contact forces and inertial parameters of
systems of rigid bodies undergoing planar frictional contact. We formulate the estimation as
a nonlinear optimization problem, where the di↵erent contact modes, i.e. contact vs. no-
contact and sticking vs. slipping, can e↵ectively and compactly be written as complementarity
conditions. We discuss the identifiability and identification of parameters and forces for sys-
tems with and without the presence of external forces. We provide analysis and experimental
demonstration with simulated and real experiments for three simple systems: a free falling
rigid body, a rolling/slipping rimless wheel, and a manipulator pushing a disk. We finish the
paper with a discussion of practical considerations for the implementation of these algorithms,
issues with non-rigid contacts, and criteria for persistence of excitation.

We would like to note that the key premise upon which the approach is formulated is rigid
body contact. While this may constitute a large set of systems of interest in robotics, it is by no
means all inclusive. There are important classes of systems that exhibit significant compliance
during contact. We are interested in generalizing the approach presented here to more complex
contact models that incorporate compliance and deformation. Further, note that the contact
resolution technique we use (LCP) is just one of several models available. In the future we
plan to evaluate the performance of various models such as [2, 11].

The focus of this paper is on estimating contact forces and inertial parameters, and we
implicitly assumed that the geometry of contact, i.e., shapes and poses, are known. Uncer-
tainty in the geometry of the problem however presents a di�cult challenge with important
implications which is an exciting direction to explore.
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Appendix A Single Rigid Body Sliding Contact Mode:

Expressions for the terms in Equation 20 are given by:
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The expressions for the linear mapping for the sliding mode are given by:
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Appendix B Single Rigid Body Sticking Contact Mode:

The expressions for the linear mapping for the sticking mode are given by:
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