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Abstract This paper presents a framework for optimizing
both the shape and the motion of a planar rigid end-effector
to satisfy a desired manipulation task. Both shape and mo-
tion play key roles in determining contact interaction, and
while both are commonly seen as design/control freedoms,
their synergies are rarely formally explored. In this paper
we study quasistatic problems like cam design, or dynamic
problems like ball throwing, where both the shape and mo-
tion of the surfaces at contact are relevant.

We frame this design problem as a nonlinear optimiza-
tion program, where shape and motion are decision variables
represented as splines. The task is represented as a series of
constraints, along with a fitness cost, which force the solu-
tion to be compatible with the dynamics of frictional hard
contact while satisfying the task.

We illustrate the approach with the example problem of
moving a disk along a desired path or trajectory, and we ver-
ify it by applying it to three classical design problems: the
rolling brachistochrone, the design of teeth of involute gears,
and the pitch curve of rolling cams. We conclude with a case
study involving the optimization and real implementation of
the shape and motion of a dynamic throwing arm.

Keywords Manipulation · Optimization · Robot End
Effector Design

1 Introduction

Jai alai players use a cesta to catch and throw a ball at high
speeds and with high accuracy (Figure 1). The cesta is an
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Fig. 1 Jai alai player throwing a ball. The cesta allows players to trans-
fer a large amount of energy to the ball while controlling its rolling
trajectory.

evocative example of the interplay between shape and mo-
tion. Their coordination allows players to transfer a large
amount of energy to a ball while controlling its trajectory.

Just like jai alai, many common mechanisms rely on
synergies between shape and motion to encode and maxi-
mize functionality. This is particularly true in mechanisms
designed for high performance on specialized tasks, for ex-
ample how the geometry of screw threads encodes the rela-
tionship between applied torque and output force.

We are motivated by the observation that both motion
and shape play key roles in determining contact interaction
[22]. Both are commonly exploited as design or control free-
doms, but their synergies are rarely formally explored in
robotics, where contact tends to be for finger-tips and pointy-
feet. In this paper we study the problem of simultaneously
optimizing them for planar manipulation tasks, and illustrate

https://www.youtube.com/watch?v=8MF1dCZ6yKY
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that by doing so, we unlock functionality impossible other-
wise.

The main contribution of this paper is a general frame-
work to design shapes and to plan motions that work to-
gether to accomplish kinematic or dynamic tasks such as
reaching a goal state, follow a path or a trajectory, or opti-
mize a fitness function. A significant part of the contribution
is in the representations for motion, shape, and tasks, that
enable the optimization. The long term goal of our work is a
better understanding, and the development of tools to effec-
tively use shape and actuation in manipulation.

The proposed approach to design shape and motion, and
the structure of this paper, is as follows:

· The problem has the form of a standard nonlinear pro-
gram where shape and motion are decision variables.
The dynamics-kinematics of planar contact are repre-
sented as constraints, similar to previous works on tra-
jectory optimization through contact [14, 16].

· The representation of shape, motion, interaction, and
task, is in terms of splines and dynamic-kinematic con-
straints at collocation points. Section 3 describes the sys-
tem, Section 4 the interaction and task constraints, and
Section 5 their spline parametrization.

· We illustrate the approach in Section 6 with the toy ex-
ample task of moving a disk along a desired path or tra-
jectory. We show the differences between optimizing ei-
ther the manipulator’s shape, or its trajectory, or both.
A key observation is that often both shape and motion
can be used to satisfy the same task, and that there is an
inherent nullspace in their combined design space.

· We verify the approach in Section 7 by formulating clas-
sical problems with known solutions: gear tooth profiles,
rolling cams of variable transmission, and the rolling
brachistochrone. The optimization approach yields cor-
rect solutions, and offers flexibility in studying varia-
tions.

· We implement the problem of planar dynamic throwing
in Section 8. In the optimized solutions, the shape and
throwing trajectory cooperate with gravity to maximize
reach and respect the frictional limits of the interaction
between a throwing palm and a ball.

We finish with a discussion of the main challenges in-
volved in simultaneously optimizing shape and motion and
promising directions for future work.

2 Related Work

2.1 Shape optimization for contact

The field of shape optimization for contact interactions is a
broad subset of mechanism design for automation. Exam-
ples include the design of part feeders, traps, fences, finger

shapes, gear teeth, and cams. Caine [3] develops a frame-
work and set of computational tools for designing the shapes
of features in a vibratory bowl feeder. Caine’s work models
contact interaction as a set of constraints in space of possi-
ble object motions. A set of shaped fences in the part feeder
is used to block trajectories of the object that result in unde-
sired orientations. Just as in Caine’s work, we seek to design
the manipulator shape to take advantage of the constraints
that contact places on the motion of an object being manip-
ulated. Unlike in Caine’s work, we use constraints explic-
itly to produce a particular trajectory, rather than to prevent
them.

Similarly, Brokowski et al [2] optimize the shape of a
curved fence used to reorient parts traveling along a con-
veyor belt. A model of the interaction between part and fence,
and the desired output orientation of the part, place a set con-
straints on the fence shape. These are converted into a set of
differential equations which are then integrated to generate
the fence shape that produces the desired part reorientation.
In the case of Caine and Brokowski, motion is assumed to
be quasistatic. Moreover, knowledge of the exact motion of
part is not necessary. Rather, the effector shape is used as
a funnel, capturing a broad set of initial states while letting
through a small set of output states. Our approach on the
other hand, in the absence of any explicit feedback, requires
precise knowledge of the state of both the part and the end
effector at all time. In that respect, it can be seen closer to a
planning problem.

Rodriguez and Mason [21, 22, 20] build a framework for
computing end-effector shapes for 1 DOF actuators and de-
sired contact interactions based on sets of contact normals.
In this case, each instance of contact presents a local con-
straint on the shape of the end effector, which can be con-
verted into a differential equation, which is then integrated
into an end effector shape. Motion is still assumed to be qua-
sistatic. However, unlike Caine or Brokowski, but similar to
our work, the state of both the part and end effector are pre-
scribed at all times. In all three cases, there is no notion of
optimization, merely constraint satisfaction.

Gear design is a relatively large field with extensive re-
cent work [5, 12, 11, 25, 26] on methods to design shapes
and pitch curves of circular and non-circular gears. This
work is primarily analytical in nature and targeted toward
the specific task of pitch curve design. In contrast, we are
able to apply our general numerical optimization based frame-
work developed in this paper to tackle gear tooth and pitch
curve design problems, as seen in sections 7.2 and 7.3.

2.2 Trajectory optimization through contact

The manipulation and locomotion communities have been
especially interested in motion optimization involving fric-
tional contact. Lynch and Mason. [13] introduced a control
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system for a one joint nonprehensile manipulator, enabling
it to preform various dynamic tasks such as throwing and
catching with a flat palm/arm. This work is very similar to
the motion planning aspects of our work, given that both fo-
cus on motion planning for a one joint nonprehensile manip-
ulator. Moreover both works frame this task as a constrained
nonlinear optimization problem. However our work differs
in a few key aspects. Lynch uses a shooting method, where
the trajectory of the object is obtained as the forward inte-
gration of control decision variables. This is well suited for
trajectories that go through multiple modes of contact, but
makes it more difficult to impose path constraints along the
trajectory of the object. On the other hand, we use a collo-
cation method, that gives us more control to constrain the
trajectory of the object.

Ryu et al [23] and Lippiello et al [10] both create control
frameworks for stabilizing and driving planar rolling sys-
tems. Both of these papers deal with special symmetric ex-
amples of a rolling contact manipulation system. Because of
this, they are able to exploit the symmetry in the problem
to derive elegant control systems to accomplish the desired
task. Our work deals with a more general form of the prob-
lem, and is focused on deriving original shape/trajectory pairs,
rather than controlling around them.

Posa et al [16] propose one of the very few frameworks
for trajectory optimization for systems that undergo inter-
mittent frictional interaction based on a complementarity
formulation for contact resolution. Unlike in our applica-
tions, that focus on rolling contact, Posa’s framework allows
to discover trajectories that undergo contact mode changes.
Like in our work, Posa also makes use of direct trajectory
optimization methods.

Becker and Bretl [1] design a set of control inputs for a
sphere rolling on a table such that the cumulative rotation of
the sphere is invariant with respect to its size- a unique ex-
ample of motion planning that takes shape uncertainty into
account. A key feature of this analysis that is shared with
our framework is that it takes into account how variations in
both the geometry of the system and the motion of the sys-
tem affect the transition between the initial and final states
of the system, and synthesizes the two to get a desired result.

2.3 Combined shape and motion optimization

Despite the abundance of work on either shape or motion
optimization for contact interactions, there is relatively little
work that approach both simultaneously. Reist and D’Andrea.
[17, 18] optimize the motion and concavity of a paddle jug-
gler capable of stably bouncing a ball without feedback. The
approach is limited to the particular application, and the con-
tact manipulation is limited to periodic instantaneous im-
pacts. Reist is able to pose this problem such that the task
of shape and motion optimization is reduced to the design

of two key scalar parameters (paddle acceleration at time of
impact and paddle curvature). This stands in contrast with
our manipulation task, which requires the optimization of a
full trajectory and a full effector shape profile.

Lynch [14] explores the design space (shape and mo-
tion) of a contact juggler for the specific task of butterfly
juggling in a planar rolling system. Both motion and shape
are represented as a 2-dimensional parametrized families.
This system is the closest work to this paper, and serves as
primary inspiration for the proposed approach. In our work,
we more generally use spline parametrizations of shape and
motion, and our formulation optimizes simultaneously both
for motion trajectory and shape profile in the same nonlinear
program.

Coincidentally, Chen [4] optimizes both the shape and
control input for an underactuated throwing arm. Chen fo-
cuses on a problem that is nearly identical to the dynamic
throwing example explored in this paper. Morever, they also
frame this as a nonlinear optimization where both shape and
effector motion are design variables that are optimized si-
multaneously. However, this approach uses a very different
parameterization for shape and motion, as well as an indirect
trajectory optimization algorithm. A direct trajectory opti-
mization method leads us to a significantly sparser set of
constraints, which allows us to explore higher dimensional
parametrizations.

More recently, Ha et al [8] presents a formulation for
simultaneously optimizing shape and motion parameters for
the design of a quadruped robot. This is a recent application
of simultaneous shape-motion design to a problem that is
quite different from the one explored in this paper.

3 A Planar Manipulation System

This paper focuses on a type of planar contact manipulation
system consisting of two rigid bodies: a hand H and an ob-
ject B, which share a single contact point, as illustrated in
Figure 2. This section describes the notation and coordinates
that we will use to describe their shapes, motions, and inter-
actions. Throughout the paper we will use subscripts h and
b referring to hand and object respectively.

In the paper we will make use of the following notation:

· (p
h

, ✓
h

) = (p
h

x

, p
h

y

, ✓
h

) and (p
b

, ✓
b

) = (p
b

x

, p
b

y

, ✓
b

)

describe the planar poses of hand and object.
· c

h

(s), c
b

(s) : [0, 1] ! R2 parametrize the shape pro-
files of hand and object in their respective frames.

· s
h

and s
b

are the values of the parameter s at contact,
thus c

h

(s
h

) and c
b

(s
b

) are the contact point in the hand
and object reference frames.

· v(s) = d

ds

c(s) is the tangent vector to a shape at point
c(s) in the hand and object reference frames.
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Fig. 2 Planar manipulation system consisting of a hand H manipulat-
ing an object B. We make use of an inertial reference frame W , and
moving frames attached to the hand and ball. Their configurations are
given by their position vectors and orientations (p

h

, ✓
h

) and (p
b

, ✓
b

).
Hand and object interact at contact point located at c

h

or c
b

and with
normals n̂

h

and n̂
b

, all defined in the hand and object reference frames.

· n̂(s) = R(

⇡

2 ) ·
v(s)
|v(s)| is the normalized outward facing

surface normal to a shape at point c(s) in the hand and
object reference frames.

Note that we will make frequent use of the rotation matrix
about axis ẑ by ✓ radians, noted by R(✓).

The motion of the type of planar system we consider in
this paper is then parametrized by the time-dependent func-
tions:

p
h

(t), ✓
h

(t),p
b

(t), ✓
b

(t)

its shape is parametrized by the functions:

c
h

(s), c
b

(s)

and its interaction by the evolution of the contact point:

c
h

(s
h

), c
b

(s
b

)

which evolve in time with the parameters s
h

(t), s
b

(t).
Note that the variables describing the system can be split

into two categories: design variables p
h

, ✓
h

, c
h

, c
b

which
describe parts of the system that can be directly controlled,
i.e., the shape and motion of the hand and the shape of the
ball; and descriptor variables p

b

, ✓
b

, s
h

, s
b

which describe
underactuated degrees of freedom determined by the evolu-
tion of the design variables, i.e, the motion of the ball and
the evolution of the contact point.

The system is also affected by the following constants,
which we assume to be known: the mass of the object m, its
moment of inertia I , gravity g, and the coefficient of friction
between hand and object µ.

4 A Planar Manipulation Task

We study two types of planar manipulation tasks framed as
constrained satisfaction/optimization problems:

Fig. 3 Example of a simple planar manipulation task. Under gravity,
the hand (white) moves an object (grey ball) along a trajectory. Note
that the orientation of the object is linked to its displacement along the
path.

1. Produce a desired motion of the object, in the form of
either a goal state, a path, or a trajectory to follow, e.g.
move along a curve, as shown in Figure 3.

2. Optimize a behavior of the object defined by a fitness
function, e.g., throw fast.

To simplify interactions, and for the sake of optimiza-
tion complexity, we restrict the search for solutions to where
hand and object interact with sticking or rolling contact, but
do not slip with respect to each other.

The task then takes the form of a nonlinear optimiza-
tion program with shape and trajectory as decision variables,
subject to dynamic, kinematic, and task constraints. A big
part of the work, which we describe in the two following
subsections, is in finding a tractable way to formulate these
constraints.

4.1 Kinematic and Dynamic Constraints

Before tailoring the system to any particular task, we need
to make sure that the interactions it produces adhere to the
laws of physics. To do so, we impose a series of kinematic
and dynamic constraints that guarantee that contact is main-
tained with no penetration, that frictional forces are such that
objects do not slide with respect to each other, and that the
acceleration of the system is along the resultant of forces.

The expression of the kinematics of contact in the form
of constraints was already described by Montana [15]. The
algebraic representation we use in this paper is similar to the
one proposed by Lynch et al [14] to describe contact jug-
gling. For their expression, we will make use of the notation
introduced in Section 3 to describe the shape and motion
of the system. For simplicity of notation, we suppress the
dependencies of c

h

, c
b

and their derivatives on s
h

and s
b

respectively.
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Contact Constraint The contact points in the hand and ob-
ject must be the coincident in the world reference frame:

p
h

+R(✓
h

) · c
h

= p
b

+R(✓
b

) · c
b

(1)

Tangency Constraint At the point of contact, the vectors
tangent to the hand and object must be opposing each other
(note that \ measures the orientation angle of a vector):

✓
h

+ \v
h

= ✓
b

+ \v
b

� ⇡ (mod 2⇡) (2)

Rolling Constraint The speed of the contact point in the
hand and object must be opposite:

|v
h

|ṡ
h

= �|v
b

|ṡ
b

(3)

Inertia Constraint The angular acceleration of the object
must be consistent with the sum of torques (

P
r⇥f = I↵):

(R(✓
b

) · c
b

)⇥m (

¨p
b

� g) = I ¨✓
b

(4)

Friction Cone Constraint The contact force exerted by the
hand on the object must be inside the friction cone. If fh =

R(�✓
h

)m(

¨p
b

�g) is the contact force applied from the hand
to the object, in the hand reference frame, then:

± v
h

|v
h

| · fh  µn̂
h

· fh (5)

We refer to the first three constraints as kinematic constraints

which we impose to all problems in this paper, and the last
two as dynamic constraints which we impose only when ap-
propriate.

These constraints are only a local approximation to the
physics of interaction. They do not explicitly prevent, for ex-
ample, the hand and object from intersecting at some point
other than the studied contact point due to their global shapes,
or due to their local curvatures. The global problem, while
important and interesting, is significantly more difficult to
formalize. The local constraints have proven useful and suf-
ficient for the problems analyzed in the paper.

4.2 Manipulation Task Constraints

The previous constraints narrow the set of possible manip-
ulation systems to those that are physically sound. Now we
explore additional constraints and the use of fitness func-
tions to represent manipulation tasks.

Decision variable constraints It is common to reduce the
dimension of the problem by directly restricting the range
of acceptable values of decision variables ↵.

↵ = k (6)
k1  ↵  k2 (7)

Common examples are to constrain the hand to rotate about
a pivot p

h

= (0, 0), or to fix the shape of the object, for
example to be a circumference of radius r:
c
b

(s) = (r cos(s), r sin(s)).

Initial and endpoint constraints We often want to con-
strain the hand or object to start from or reach a configu-
ration:

p
h

(t0|tf ) = k1 and/or ✓
h

(t0|tf ) = k1 (8)
p
b

(t0|tf ) = k2 and/or ✓
b

(t0|tf ) = k2 (9)

to start from rest:

˙p
b

(t0) = 0 and ˙✓
b

(t0) = ṡ
b

(t0) = 0 (10)

˙p
h

(t0) = 0 and ˙✓
h

(t0) = ṡ
h

(t0) = 0 (11)

or to (additionally) start from a static equilibrium:

¨p
b

(t0) = 0 and ¨✓
b

(t0) = s̈
b

(t0) = 0 (12)

¨p
h

(t0) = 0 and ¨✓
h

(t0) = s̈
h

(t0) = 0 (13)

Implicit motion constraints In some cases, constraints only
implicitly affect the decision variables. The most frequent
use is to constrain the object or hand to move along a path,
rather than a trajectory. These are formulated as general im-
plicit non-linear constraints:

F (p
b

,p
h

) = 0 (14)

Regularization constraints Occasionally, we incorporate
extra constraints to guide the solver to find or avoid a par-
ticular type of solution. The two most frequently used regu-
larization constraints are fixing the x component of the hand
shape to a given function:

c
h

x

(s) = k(s) (15)

and constraining each point of the hand shape to a line that
varies with s:

k1(s)ch
x

(s) + k2(s)ch
y

(s) = k3(s) (16)

We often use (15) to enforce c
h

y

= f(c
h

x

) i.e. the hand
shape passes the vertical line test. Similarly, (16) is used
to enforce |c

h

| = f(\c
h

). Both are effective at preventing
self-intersecting hand shapes, which are undesirable.

Fitness cost Often, we want to optimize a behavior with re-
spect to a performance metric, rather than satisfy a particular
constraint. These become part of the cost function of the op-
timization problem. Two performance metrics we will study
in this paper are throwing distance and travel time.
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Fig. 4 Spline construction of the continuous decision variable �(x)
with the discretized parameters ↵1 . . .↵N

, with N = 5, and with
M + 1 = 8 collocation points where we will impose all constraints.
Note that the domain of each basis is (�2, 2) which gives sparsity to
the spline representation. We’d like to emphasize that the number of
collocation points and basis functions used in implementation depends
on the problem and number of constraints. This is discussed in more
detail in Section 9.

5 Discretization

The shape and motion of the system are functions of space
and time. The formulation in Section 4 is continuous, but for
optimization purposes, we use a discrete representation. We
want a representation that supports smoothness C2 and that
is sparse, i.e., each decision variable has a limited domain of
influence both in space and time.

To do so, we describe shape and motion as linear combi-
nations of shifted basis functions, as illustrated in Figure 4.
Let ⇠(x) be any given decision variable, dependent on x,
which could be either time t or space s. Then we construct:

⇠(x) =

NX

i=1

↵
i

� (L(x)� i+ k) (17)

where:

· � is a cubic B-spline basis function with uniformly spaced
knot points, which is twice differentiable (smoothness)
and only non-zero in the interval (�2, 2) (sparsity).

· ↵1 ...↵
N

are coefficients that weight the basis functions.
Note that these become the discrete decision variables
that discretize the continuous decision variable ⇠.

· L(·) is a factor that non-dimensionalizes x as appropri-
ate. For shape variables, s is already dimensionless, so
L(s) = s. For motion variables, we transform time as
L(t) = � t

⌧

, where ⌧ is a global time constant equal
to the duration of motion ( 1

⌧

is a decision variable in
the optimization program, allowing trajectories of vary-
ing length), and � is a normalizing constant that ensures
each component of the trajectory has the same nominal
duration regardless of the number of basis functions used
in its representation (which allows varying resolution).

· k is an offset (usually k = 2) used to correctly place the
basis functions relative to the domain of ⇠.

The use of basis functions allows us to compute in closed
form the derivatives of the decision variables, which are nec-
essary for many of the constraints described in Section 4:

˙⇠(x) =

NX

i=1

↵
i

˙� (L(x)� i� k) ˙L(x) (18)

¨⇠(x) =

NX

i=1

↵
i

¨� (L(x)� i� k) ˙L(x)2 (19)

where we used that ¨L(x) = 0.
Ideally, the constraints of motion would hold true at all

times. However, for resolution purposes, we impose the mo-
tion constraints at M +1 evenly distributed points along the
trajectory, playing the role of collocation points in trajec-
tory optimization [9]. In particular, we replace each of the
continuous motion constraints in a problem

G(t,↵1, ...,↵
N

,
1

⌧
) = 0

��
t2[0,⌧ ]

(20)

with a set of M + 1 discrete constraints:

G(t
j

=

⌧

M
j,↵1, ...,↵

N

,
1

⌧
) = 0

��
j=0...M (21)

We extend this discretization to a periodic domain to
represent closed shapes and periodic motions. The number
of collocation points and basis functions we use varies with
the problem and number of constraints. A more detailed de-
scription of implementation specifics can be found in Ap-
pendix A.

6 Illustrative Toy Problem

In this section we describe the method to optimize shape
and motion with the simple problem of moving a ball under
gravity along a desired path p

b

, with a rotational paddle.
We start by exploring these two problems: (Prob. 1) For

a given fixed hand motion, is there a hand shape that forces
the ball to travel along the desired path? and (Prob. 2) For
a given fixed hand shape, is there a hand motion that forces
the ball to travel along the desired path?

We can formulate both problems as a shape-motion pair
that satisfies the following constraints:

· Kinematic: contact, tangency and rolling.
· Dynamic: inertia and friction.
· Fixed decision variables:

- The object is a ball c
b

(s) = (l cos(s), l sin(s)).
- The hand pivots about the origin: p

h

(t) = 0.
- (Prob. 1) Fixed hand motion ✓

h

(t) = k · t, for exam-
ple to constant velocity.

- (Prob. 2) Fixed hand shape c
h

(s), for example, to a
straight line.



Optimal Shape and Motion Planning for Dynamic Planar Manipulation 7

0 0.1 0.2 0.3 0.4 0.5

    0

 0.2

0.4

0.6

Hand orientation

time (seconds)time (seconds)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.3

-0.2

-0.1

Hand orientation

time (seconds)
0 0.1 0.2 0.3 0.4 0.5

 (r
ad

ia
ns

)

-0.5

-0.4

-0.3

-0.2

-0.1

0
Hand orientation

Fig. 5 Toy problem of moving a ball under gravity along a given path, drawn with a dotted line. There are infinite solutions in the shape-motion
nullspace. Here we show two interesting cases: (a) Solution when the hand is forced to moved along a fixed trajectory, e.g., constant angular
velocity, and only the hand shape is a design freedom. (b) Solution when the hand shape is fixed, e.g., a straight line, and only the hand trajectory
is a design freedom. Note that the ball follows exactly the same path in both cases, although at different velocities. (c) Solution when both hand
shape and trajectories are design freedoms. Note that in this case we can impose the trajectory of the ball, not just its path, illustrated by the fact
that the ball moves at a constant speed along the curved path.

· Task: The ball moves along a desired path given as a
level set G(p

b

(t)) = 0. In this example we use a parabola.

Figure 5a and Figure 5b show the outcome of the opti-
mization. Both solutions satisfy all constraints and succeed
in transporting the ball along the desired path, while rolling
under the effect of gravity on the moving hand. This is an
illustrative example of the nullspace that exists in the shape-
motion design space. It is ultimately the combination of both
that produces the desired object manipulation, but in many
cases we can reproduce the effect of a motion in a shape, as
well as the effect of a shape in a motion.

Note in the previous examples that the ball traverses the
path at different speeds. Freeing both shape and motion in
the optimization problem, and exploiting their nullspace, give
us enough design freedom to control the trajectory p

b

(t)

along which the ball will move, not just its path. The prob-
lem has a very similar formulation to the previous one, but
we instead replace the task constraint with a stricter con-
straint on the ball motion p

b

(t) = p⇤
b

(t), and remove the
constraints on the shape or motion of the hand. The solu-
tion, illustrated in Figure 5c, succeeds in moving the ball
along the desired path, but now, for example, with constant
speed. Controlling the timing of the motion of the ball is
something that would have been impossible when only op-
timizing shape or motion, because there are not enough de-
sign freedoms.

A

B

Fig. 6 Brachistochrone for a rolling cylinder. The analytical solution
of the trajectory of the center of the cylinder converges (dotted line) to
a cycloid (continuous line), when reducing the time to traverse from A
to B.

7 Classical Problems

7.1 Rolling Brachistochrone

A brachistochrone curve is the path that allows an object to
travel from A to B in the shortest amount of time, when
starting from rest at A and accelerated by gravity g. A clas-
sical result in mechanics is that when the object is a friction-
less bead, the brachistochrone is a section of a cycloid [24].
Rodgers [19] showed that in the case of a rolling disk the
brachistochrone is also a cycloid.

We represent the problem of the rolling brachistochrone
with the proposed framework, where the path is a non-moving
hand and the object is a disk, whose rolling trajectory down
the hand p

b

(t) becomes the brachistochrone when it achieves
minimum travel time. We impose the following constraints:



8 Orion Taylor, Alberto Rodriguez

Fig. 7 Anatomy of a gear. The interaction between gears is largely de-
termined by their tooth profile. The center line is the line connecting
the two rotation centers, the line of action is orthogonal to the con-
tact tangent between the two gears, hence is the direction along which
force is transferred from one gear to another. The pressure angle, com-
plementary to the angle between the line of action and the center line,
is key in the design of gears.

· Kinematic: contact, tangency and rolling.
· Dynamic: inertia. Since the disk rolls without slipping

(infinite friction), we omit the friction cone constraint.
· Fixed decision variables:

- The object is a disk c
b

(s) = (l cos(s), l sin(s)).
- The hand is static p

h

(t) = 0 and ✓
h

(t) = 0.
· Initial and endpoint constraints:

- The disk starts at rest:
˙p
b

(t0) = 0, ˙✓
b

(t0) = ṡ
b

(t0) = 0.
- The disk starts at p

b

(t0) = A.
- The disk ends at p

b

(t
f

) = B.
· Task: The duration of the trajectory is ⌧ = T .

We have approached the formulation of this problem in
two different ways. In the first approach, we set the objective
function to be proportional to the duration of the trajectory
T . We have found that this approach results in the optimizer
getting trapped in local minima. An alternative method is to
set the value of T as a constraint, then iteratively decrease
it outside the optimizer. The process starts with T equal to
the time it takes for the roller to traverse a straight line from
A to B, and gradually asks the program to find paths with
smaller and smaller values of T until a solution cannot be
found. Though this method requires human supervision to
choose the values of T to iterate through, we have found that
it is more robust. Figure 6 shows the sequence of solutions
converging to a cycloid.

4 5 6 7 8 9 10

-2

-1

0

1

2

0 1 2 3

Fig. 8 Gear tooth profiles obtained for five different pressure angles
↵. The figure shows the corresponding line of action for each desired
pressure angle (orthogonal to the gear tooth profile at the pinch point)
and the recovered gear tooth profiles. These correspond very accurately
to involute curves, known to provide constant pressure angle.

7.2 Involute Gears

Gear design is a classic shape design problem. A pair of
gears should mesh while maintaining a time-invariant gear
ratio. The fundamental law of gearing [7] states that these
two properties are equivalent to constraining the line of ac-

tion to pass through the pitch point at all times. Figure 7
illustrates these concepts.

Involute gears, i.e., gears with teeth shaped as involute
curves, are a popular solution that satisfy the above proper-
ties. One unique (and useful) property of the meshing be-
tween involute gears is that the line of action is constant
throughout contact. As a consequence, the pressure angle ↵,
which determines the amount of power that can be transmit-
ted through the gear train, is constant throughout the mesh-
ing.

We now formulate the problem of finding gear shapes
that satisfy the above properties with the proposed optimiza-
tion approach. More concretely: for a given center distance
between gears l, gear ratio r, and pressure angle ↵, find gear
teeth that mesh adequately. We will indeed recover involute
gears. In this case both hand and object are a pair of meshing
gear teeth, and we impose the following constraints:

· Kinematic: contact, tangency and rolling.
· Fixed decision variables:

- The driving gear rotates about the origin p
h

(t) = 0.
- The driven gear rotates about the point p

b

(t) = (l, 0).
· Task:

- Constant gear ratio r. We achieve this by fixing the
trajectory of the gears ✓

h

(t) = !t, ✓
b

(t) = �r!t.
- Constant pressure angle ↵. That is:
✓
h

+ \v
h

(s
h

) = ↵+ ⇡ (mod 2⇡)

Note that in this case we do not impose dynamic constraints,
since the meshing between gears can be seen as a purely
kinematic/geometric problem. Another distinction from other
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2⇡

✓
b

✓
h

2⇡ ✓
h

2⇡

�
˙✓
b

˙✓
h

1

0

Fig. 9 (a) Pair of pitch curves with a desired transmission profile (b), and transmission ratio h(✓1) =
✓̇2

✓̇1
(c).

problems, is that in this case we are looking for both the
shape of hand and object (both gears).

Figure 8 shows the obtained shapes corresponding to
the section of a single geartooth for pressure angles ↵ =

(.5, .6, .7, .8, .9) · ⇡

2 and gear ratio r = 1.5. These curves
can then be assembled into entire gear profiles. The result-
ing profiles are closely aligned with the expected analytical
result corresponding to involute gears, also depicted in Fig-
ure 8.

It should be noted that the rolling constraint is only valid
when the contact and pitch points coincide, and is approxi-
mately true in the vicinity of this condition. Involute gears
with higher pressure angles are less eccentric, so a larger
portion of the contact interaction is spent nearby the pitch
point. In this case, the rolling contact constraint is approxi-
mately true, and can be used in the optimization. However,
as the pressure angle decreases, the involute becomes more
eccentric, resulting in a larger portion of the contact inter-
action being spent further away from the pitch point. In this
case, the approximation of rolling contact no longer holds,
causing the optimization to break down. As a result, the op-
timization becomes unstable when trying to generate invo-
lute profiles with pressure angles below 45

�. For reference,
the pressure angles used in real gears are closer to 20

�. To
generate such a profile, we would need to change the con-
straints of the optimization, and relax the rolling with no slip
constraint.

7.3 Pitch Curve of non-Circular Gears

Every planar gear is characterized by a pitch curve, an imag-
inary smooth curve that defines its perimeter. The pitch curves
of two meshing gears are in rolling contact as the gears ro-
tate. For a circular gear, the pitch curve is a circle.

A classic problem in noncircular gear design is that of
finding a pair of pitch curves R1(✓1), R2(✓2) for meshing
gears with a given transfer function h(✓1) =

✓̇2

✓̇1
, and center

distance l. The typical approach [25] is to limit the problem
to pitch lines that contact along the center line, in which

case:

R1(✓1) +R2(✓2(✓1)) = l, h(✓1) =
R1(✓1)

R2(✓2(✓1))

due to contact and rolling constraints. The solution to these
equations is then:

R1(✓1) =
Lh(✓1)

1 + h(✓1)
, R2(✓2(✓1)) =

L

1 + h(✓1)

Alternatively, we formulate the problem with the pro-
posed framework, and, if desired, remove the above limi-
tation. In this case, the hand and object shapes are the pitch
curves. If we want to design a pair of pitch curves with trans-
fer function h(·), the solution should satisfy:

· Kinematic: contact, tangency and rolling.
· Fixed decision variables:

- The driving gear rotates about the origin p
h

(t) = 0.
- The driven gear rotates about the point p

b

(t) = (l, 0).
- The orientations of both gears are ✓

h

(t) = !t and
✓
b

(t) = �H(!t), where H 0
(✓) = h(✓).

· Periodic boundary constraints: We impose that the con-
tact point resets after a full rotation of the gear s

h

(0) ⌘
s
h

(t
f

)mod N
h

and s
b

(0) ⌘ s
b

(t
f

)mod N
b

.

Figure 9 shows an example with transfer function h(✓) =

1 +

1
1.707cos(✓) (the same as an example in [11]). The re-

sulting pitch curves align closely with the analytical result.

8 Dynamic Throwing

Inspired by the jai alai cesta in Figure 1, we set to design and
implement a planar 1DOF thrower. Optimal throwing, in the
context of a rotating paddle, requires an agreement between
shape and trajectory. To do so, we look for a combination of
shape and throw trajectory that maximizes the distance trav-
elled by the ball before hitting the ground. To evaluate this
distance, we assume that the ball is released from the hand
at the end of the throw, and then follows a ballistic motion
(without drag) until it hits the ground. Thus, the throwing
distance is a function of the position and velocity of the ball
at the end of the throw trajectory.
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There are several potential degenerate solutions to this
optimization problem. Intuitively, the throwing distance should
increase with the speed of the throwing motion and the length
of the throwing arm. Thus, a naively constrained optimiza-
tion should result in an exceedingly long throwing arm paired
with an exceedingly fast throwing motion, solutions that are
far beyond the capabilities of the hardware. To avoid such
solutions, we impose some regularization constraints:

· To prevent arbitrarily large throwing speeds, the angular
acceleration of the hand is bounded by ↵̄.

· To bound the size of the throwing arm, we fix the ball to
start at rest at a given location A, while constraining the
hand to release the ball within radius l of the origin.

· The friction constraint helps to regularize the solution,
since faster throws are more likely to result in slipping.

In summary, we define the problem of optimizing the
distance the ball travels before hitting the ground using the
following constraints:

· Kinematic: contact, tangency and rolling.
· Dynamic: inertia and friction.
· Fixed decision variables:

- The object is a ball c
b

(s) = (l cos(s), l sin(s)).
- The hand pivots about the origin: p

h

(t) = 0.
- Bounded angular acceleration: |¨✓

h

(t)|  ↵̄.
· Initial and endpoint constraints:

- The system starts at static equilibrium as in Equa-
tion 10-Equation 13.

- The ball starts at p
b

(t0) = A.
- The ball leaves the hand within a radius |p

b

(t
f

)| = l.

We have found that in general, for the solver to generate
a solution that satisfies the constraints of motion, it must be
initialized with a guess that also satisfies these constraints.
Here, this is accomplished by simulating the system with a
trivial arm shape (a straight line) for some throwing motion,
then converting the simulation results into an initial guess.
By choosing the initial guess for the shape and motion of the
throwing arm, we can prod the optimizer to produce either
an overhand or underhand throw.

For the overhand throw, the result of the optimizer, as
seen in Figure 11, is a hand shape that is concave up near
the center, and concave down near the tip. For the under-
hand throw, the resulting shape, seen in Figure 12, is con-
cave down near the center, and concave up near the tip. In
both cases, the throw consists of an initial downward dip
to get the ball rolling using gravity, followed by an upward
flick to fling the ball forward.

Experiments
The experimental setup consists of a motor attached to a
rigid base, as seen in Figure 10. The computed hand shapes
for underhand and overhand throwing are fused into a two-
ended lasercut hand profile. The motor controller (Galil DMC

4020) has position/velocity tracking functionality, allowing
the system to execute the computed trajectories. The result-
ing motion was captured with a high speed camera. We also
use a Vicon motion tracking system to measure p

b

(t). For
our experiments, we had the system execute 30 underhand
throws and 30 overhand throws. It should be noted that there
is no feedback and the initial positions were set manually.
We see that the predicted motion of the ball generated by
the optimization aligns closely with the motion of the ball
measured by the tracking system, as seen in Figure 11 and
Figure 12. This suggests that the kinematic and dynamic
constraints used in the optimization are valid.

9 Discussion

Solver
Our implementation uses SNOPT [6] for solving the pre-
sented nonlinear programs. Out of a handful solvers we have
tried, this is the one that we have found to consistently con-
verge to a feasible solution for the presented optimization
problems.

Multiple contact modes
This work assumes rolling/sticking contact, and does not
currently permit other contact modes (sliding, impact etc.).
This is a limitation that would be great to alleviate in the fu-

Fig. 10 The hardware setup. The palm is attached to a motor which is
mounted to the control box. Four vicon cameras are used to track the
motion of the ball.
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Fig. 11 The optimal overhand throw obtained is composed of two phases: a first gentle inclination where gravity accelerates the ball, followed by
a fast upward stroke. The stream of pictures shows a real throw and the right most figure shows the ball trajectory spread over 30 throws.

Fig. 12 The optimal underhand throw we obtain is composed of two phases: a first gentle inclination where gravity accelerates the ball, followed
by a fast upward stroke. The stream of pictures shows a real throw and the right most figure shows the ball trajectory spread over 30 throws.

ture by exploring complementarity formulations. The tran-
sition between contact modes often corresponds to discon-
tinuities in the system state, which our current formulation
cannot handle, because we represent the entire trajectory of
each state variable using a single spline, which is necessar-
ily smooth. To remedy this, we would need to change our
representation to one that is piecewise smooth.

Extension to three dimensions
This approach could be generalized to 3d, but would re-

quire extra regularization. Our framework generates shapes
and motions by applying many local motion constraints along
a trajectory. The result is that the geometry of the end-effector
is constrained along the path of the contact point between it
and the object. In 2d, where the shape of the end-effector
is a contour, this sufficiently constrains its shape. However,
in 3d, where the shape of the end-effector is a surface, this
means that the majority of the end-effector geometry has no
effect on its interaction with the object, and is therefore in-
determinate. This could be remedied by either optimizing

for several trajectories simultaneously or including a set of
well designed regularization constraints while still only op-
timizing for a single trajectory.

Fitness objective vs. constraint satisfaction
Posing some design objectives (i.e. travel time) as an opti-
mization cost often results in local minima. We fix this by
instead imposing the design objective as a constraint that
iteratively increases or decreases. In the present implemen-
tation, this requires human supervision to determine the se-
quence of constraint values.

Collocation
Our implementation of collocation differs from the norm
in a few key ways. First, the explicit equations of motion
ẍ = f(x, ẋ, t) do not appear in the collocation constraints.
In fact, the accelerations of several motion variables do not
appear in any of the optimization constraints. Instead, most
of the equations of motion are expressed in an implicit, in-
tegrated form (i.e. the kinematic constraints of motion), a
property specific but not limited to rolling contact problems.
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As a result, the optimization constraints are more compact,
and are therefore easier to implement.

Furthermore, the number of basis functions used for each
decision variable and the number of collocation points can
be chosen independently of one another. This means that
resolution of each decision variable can be tuned indepen-
dently. The number of collocation points can then be tuned
so that the optimization does not become too over/under-
constrained. In a typical collocation method, each compo-
nent of the trajectory has the same number of basis func-
tions, which allows the collocation points to be placed to
maximize the integration accuracy of the method. We have
dropped these integration accuracy guarantees in favor of
the flexibility and ease of implementation our method has to
offer. However, we plan to explore more exact collocation
methods in the future.

It should also be noted that since the same set of mo-
tion constraints are applied at each of the collocation points,
adding or removing a collocation point results in the addi-
tion or removal of more than one constraint from the opti-
mization. Many of the design problems we present are con-
straint satisfaction problems. In these cases, it would be ideal
for the number of constraints to match the number of deci-
sion variables. However, because each collocation point cor-
responds to multiple constraints, it is generally not possible
to exactly match the number of constraints with the num-
ber of decision variables by adding or removing collocation
points. In practice, we deal with this by using enough collo-
cation points to slightly over-constrain the problem, and in-
clude a small tolerance on equality constraints so the solver
can find a feasible solution.

Optimization Initialization
As mentioned in Section 8, for some problems, it is neces-
sary to initialize the optimization with a guess that satisfies
both the kinematic and dynamic constraints of motion. i.e.,
that is feasible. To generate a valid initial guess, we simu-
late the system for some trivial geometry and control input.
In the case of the toy problems and brachistochrone, this was
simply a ball rolling down a flat slope. In the case of the non-
circular pitch curve design problem, the initial guess was a
pair of identical circular gears rotating at constant angular
velocity. In the case of dynamic throwing, the initial guess
is the simulation of a straight throwing arm executing a sim-
ple throwing motion.

Problem precision and solution sensitivity
We use intuition and trial and error to determine the num-
ber of control points and collocation points. This is far from
idea. Some regions of the solution space require higher res-
olutions than others, and high resolution discretizations re-
quire more accurate initial guesses for solution convergence.
The solution is also sensitive to the number of collocation
and control points, the relative scaling of costs vs. constraints,

and the initial guess. A potential solution is to use multiscale
optimization techniques that automatically increase resolu-
tion where necessary.

Shape regularization
There are two main reasons why shape regularization is nec-
essary. First, the shape function has many extra degrees of
freedom. For instance, c

h

(s) and c
h

(f(s)) describe the same
contour for all monotonically increasing functions f . This
could be resolved if s corresponded to arc-length, however
this is difficult to implement in practice. Without regulariza-
tion, the control points representing shape tend to spread out
unevenly, clustering too closely together in some regions,
resulting in poor solutions. Second, any sufficiently general
representation of shape is capable of self-intersections. Our
formulation, which relies on local constraints, cannot pre-
vent self-intersections, which are a global feature. The reg-
ularization constraints described by Equation 15 and Equa-
tion 16 are designed to address these issues.

We implement Equation 15 by constraining the control
points (↵

xi

,↵
yi

) of the shape contour to live along specific
vertical lines that are chosen beforehand, as seen in Fig-
ure 13. This fixes the control points of the x-spline, ↵

xi

,
while the y-spline of the shape is free to vary, halving the
total degrees of freedom of the shape in the optimization. In
this case, the parametric curve can be thought of as a func-
tion of x, and thus has no self-intersections. We found that
this constraint was effective both for the toy problems and
dynamic throwing.

We implement Equation 16 by constraining the control
points (↵

xi

,↵
yi

) of the shape contour to live along specific
lines that radiate from the origin:

0 = � sin(�
i

)↵
xi

+ cos(�
i

)↵
yi

(22)

as seen in Figure 14. Like the previous constraint, this also
halves the total degrees of freedom of the shape in the op-
timization. Here, the parametric curve can be thought of as
polar function, and thus has no self-intersections. We found
that this constraint was effective for computing both the in-
volute profile and the noncircular pitch curves.

Though these regularization constraints may be effec-
tive, they require human supervision. We plan to explore
alternative shape representations that reduce dimensional-
ity, and to develop heuristics for finding more natural reg-
ularization constraints of a given task. One specific shape
representation that we’d like to explore is to represent the
end-effector shape as a single function in polar coordinates
(r

h

(✓), ✓) instead of as a parametric curve in cartesian coor-
dinates (x

h

(s), y
h

(s)). This would eliminate extra degrees
of freedom in the representation and reduce the number of
self-intersections of the curve.

Human Supervision
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Fig. 13 An example of shape regularization constraint (15). Here, the
control points of the shape contour (↵

xi
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) are constrained to spe-
cific vertical lines.
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Fig. 14 An example of shape regularization constraint (16). Here,
the control points of the shape contour (↵

xi

,↵
yi

) are constrained
to lines passing through the origin with angle �

i

: � sin(�
i

)↵
xi

+

cos(�
i

)↵
yi

= 0

Currently, our method requires a fair amount of human
supervision to be used effectively. Specifically, the person
implementing the method must:

· Choose the number basis functions used to represent each
trajectory component.

· Choose the number of collocation points.
· Design the regularization constraints.
· Choose an initial guess for the solver.

We have found that the final result is sensitive to these choices,
and that these “settings” vary from problem to problem. In
the future, we will study how to automate this process, which
will help reduce the dependence of domain specific knowl-
edge to implement our method. For instance, when choosing
the number of basis functions, it would be useful to incor-
porate a method that slowly increases the resolution of each
spline until it is sufficient for describing the desired behavior
in a given trajectory.

Future work
This work is focused on generating a shape/motion pair for
a given set of design constraints. Our framework generates

only one motion for a corresponding shape, and that motion
corresponds to an open loop control input. In the future, we
would like to extend our framework to design shape/motion
pairs that facilitate the integration of a closed loop control
system. Specifically, end-effector shapes and control inputs
that might increase either the controllability or stability of
the desired manipulation task. One application would be the
development of a throwing arm that could consistently and
accurately hit a target. Another possible direction along these
lines is to design shape/motion pairs that are robust to vari-
ations in the system parameters like the mass and radius of
the ball or the coefficient of friction between the ball and the
hand.

We would also like to extend our framework so that it
generates end-effector shapes with a multitude of motions
in mind. For instance, the design of a catching arm should
take multiple catching motions into account, because the in-
coming ball could approach from a wide range of projectile
arcs, and could have a variety of initial angular velocities.
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A Collocation Details

A.1 Motion Variables

Let’s consider a motion variable ⇠(t) represented using N evenly spaced
basis function, in a nonlinear program that makes use of M +1 evenly
spaced collocation points. If the time length of the trajectory is ⌧ , then
the jth collocation point corresponds to time t

j

=

⌧

M

j. As described
in Section 5, ⇠(t) equals:

⇠(t) =
NX

i=1

↵
i

� (L(t)� i+ 2) (23)

where:

L(t) =(N � 3)

t

⌧
(24)

˙L(t) =
N � 3

⌧
(25)

¨L(t) =0 (26)

For the sake of completeness, we list the definition of �(x) and its
derivatives:

�(x) =

8
>>>>>>>><

>>>>>>>>:

0| �1  x  0

1
6
x3

+ x2
+ 2x+

4
3
| �2  x  �1

�1
2
x3 � x2

+

2
3
| �1  x  0

1
2
x3 � x2

+

2
3
| 0  x  1

�1
6
x3

+ x2 � 2x+

4
3
| 1  x  2

0| 2  x  1

(27)

˙�(x) =

8
>>>>>>>><

>>>>>>>>:

0| �1  x  0

1
2
x2

+ 2x+ 2| �2  x  �1

�3
2
x2 � 2x| �1  x  0

3
2
x2 � 2x| 0  x  1

�1
2
x2

+ 2x� 2| 1  x  2

0| 2  x  1

(28)

¨�(x) =

8
>>>>>>>><

>>>>>>>>:

0| �1  x  0

x+ 2| �2  x  �1

�3x� 2| �1  x  0

3x� 2| 0  x  1

�x+ 2| 1  x  2

0| 2  x  1

(29)

As a quick reminder, this choice of �(x) is special because:
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· It is twice differentiable
· It vanishes outside the interval [�2, 2]

· It is constructed out of 3rd degree polynomials (which is the min-
imum degree required for it to be twice differentiable)

· It has evenly spaced knot points.
Differentiating, we find expressions for ˙⇠(t) and ¨⇠(t):

˙⇠(t) =

NX

i=1

↵
i

˙� (L(t)� i+ 2)

✓
N � 3

⌧

◆
(30)

¨⇠(t) =

NX

i=1

↵
i

¨� (L(t)� i+ 2)

✓
N � 3

⌧

◆2

(31)

In the optimization, ⇠(t) and its derivatives are only evaluated at
the collocation points t

j

=

⌧

M

j. Substituting this in for t, we find that:

⇠
j

=⇠(t
j

) =

NX

i=1

↵
i

�

✓
N � 3

M
j � i+ 2

◆
(32)

⇠0
j

=

˙⇠(t
j

) =

NX

i=1

↵
i

˙�

✓
N � 3

M
j � i+ 2

◆✓
N � 3

⌧

◆
(33)

⇠00
j

=

¨⇠(t
j

) =

NX

i=1

↵
i

¨�

✓
N � 3

M
j � i+ 2

◆✓
N � 3

⌧

◆2

(34)

It is important to remember that the actual decision variables in
the optimization are the weights of the basis functions ↵1 ...↵

N

used
to describe each of the continuous decision variables ⇠(x), and the
inverse of the time length of the trajectory 1

⌧

. Thus, it would be useful
to be able to quickly map 1

⌧

and the vector of basis function weights,

A = [↵1, ...↵i

, ...↵
N

]

T (35)

to the vectors encoding the values of ⇠ and its derivatives evaluated at
the collocation points:

V = [⇠0, ⇠1, ...⇠j , ...⇠M ]

T (36)

V 0
= [⇠00, ⇠

0
1, ...⇠

0
j

, ...⇠0
M

]

T (37)

V 00
= [⇠000 , ⇠001 , ...⇠00

j

, ...⇠00
M

]

T (38)

To do this, we define transformation matrices D0, D1, D2:

D0
ij

=�

✓
N � 3

M
j � i+ 2

◆
(39)

D1
ij

=

˙�

✓
N � 3

M
j � i+ 2

◆
(N � 3) (40)

D2
ij

=

¨�

✓
N � 3

M
j � i+ 2

◆
(N � 3)

2 (41)

These matrices are constant for a given choice of (M,N), mean-
ing that they only need to be evaluated once at the start of the opti-
mization. The matrices are also sparse, since �(x), ˙�(x), ¨�(x) vanish
outside of the interval [�2, 2]. It follows that:

V = D0A, V 0
=

1

⌧
D1A, V 00

=

1

⌧2
D2A (42)

We construct transformation matrices for each motion variable, since
each motion variable can be represented with a different number of
basis functions. This framework gives us the flexibility to tune the res-
olution of each spline independently, while managing the necessary
re-scaling operations to ensure that each motion variable is evaluated
across the same time interval.

A.2 Shape Variables

We represent shape as a parametric curve: (X(s), Y (s)). Like the mo-
tion variables, X(s) and Y (s) are described as a sum of basis func-
tions,

X(s) =
NX

i=1

↵
xi

�(s� i� k) (43)

Y (s) =

NX

i=1

↵
yi

�(s� i� k) (44)

where the basis function � is described in Section A.1. Unlike the mo-
tion variables, which can have varying resolutions, we use the same
number of basis functions to describe the X and Y splines of a given
shape. Since the contact parameter s(t) is one of the motion variables
in the optimization, it follows that �(s(t

j

)�i�k) is not constant dur-
ing the optimization. Thus, there is no benefit in constructing a set of
transformation matrices for X and Y as we did in Section A.1. Instead,
we must re-evaluate �, ˙� using (27) and (28) each time we compute
X,Y and their derivatives.

B Toy Problem Implementation

In this section, we will describe the specifics details of converting the
toy problem into a nonlinear program.

B.1 Variable Definitions

For the sake of simplicity, we will assume that each motion variable
uses the same number of basis functions. In this case, if the motion
variables use N basis functions and the shape variables use L basis
functions, then the decision variables in the optimization are the vectors
of basis function weights for each continuous decision variable:

¯✓
h

=[

¯✓
h1, ...¯✓hi

, ...¯✓
hN

]

T (45)

s̄
h

=[s̄
h1, ...s̄hi

, ...s̄
hN

]

T (46)
¯✓
b

=[

¯✓
b1, ...¯✓bi, ...¯✓bN ]

T (47)

s̄
b

=[s̄
b1, ...s̄bi, ...s̄bN ]

T (48)

p̄
bx

=[p̄
bx1, ...p̄bxi

, ...p̄
bxN

]

T (49)

p̄
by

=[p̄
by1, ...p̄byi

, ...p̄
byN

]

T (50)

c̄
hx

=[c̄
ch1, ...c̄hxi

, ...c̄
hxL

]

T (51)

c̄
hy

=[c̄
hy1, ...c̄hyi

, ...c̄
hyL

]

T (52)

We include an additional decision variable ⌫ =

1
⌧

, where ⌧ is the
time length of the trajectory. For the toy problem, we assume that the
ball is a circle of radius r, and the hand is constrained to rotate about
the origin, meaning that the decision variables p̄

hx

, p̄
hy

, c̄
bx

, c̄
by

are
absent from the optimization.

If ⇠
j

, ⇠0
j

, ⇠00
j

denote the value of a continuous decision variable
and its derivatives evaluated at the jth collocation point, then for M+1
collocation points this can be represented in vector form as:

⇠ =[⇠0, ⇠1, ..., ⇠j , ...⇠M ]

T (53)

⇠0 =[⇠00, ⇠
0
1, ..., ⇠

0
j

, ...⇠0
M

]

T (54)

⇠00 =[⇠000 , ⇠001 , ..., ⇠00
j

, ...⇠00
M

]

T (55)
¯⇠ =[

¯⇠1, ..., ¯⇠i, ...¯⇠N ]

T (56)
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As shown in Section A.1, we see that if ⇠(t) is a motion variable, then
we can use the transformation matrices D0, D1, D2 to quickly map ¯⇠
and ⌫ to ⇠

j

, ⇠0
j

, ⇠00
j

:

⇠ = D0
¯⇠, ⇠0 = ⌫D1

¯⇠, ⇠00 = ⌫2D2
¯⇠ (57)

To evaluate the hand shape and its tangency vector at the jth collo-
cation point, we use the definitions:


c
hxj

c
hyj

�
=

LX

i=1


c̄
hxi

c̄
hyi

�
�(s

hj

� i� k) (58)


c0
hxj

c0
hyj

�
=

LX

i=1


c̄
hxi

c̄
hyi

�
˙�(s

hj

� i� k) (59)

Since the ball is a circle of radius r, the ball shape and its tangecny
vector at the jth collocation point are given by:

c
bxj

c
byj

�
= r


cos(s

bj

)

sin(s
bj

)

�
(60)


c0
bxj

c0
byj

�
= r


� sin(s

bj

)

cos(s
bj

)

�
(61)

B.2 Function Definitions

We define R as a function that maps angle ✓ to the rotation matrix
corresponding to a counterclockwise rotation by ✓:

R(✓) =


cos(✓), � sin(✓)
cos(✓) sin(✓),

�
(62)

We define \ as the function that maps the vector [x, y]T to its polar
angle:

\[x, y]T = Im (ln(x+ yi)) (63)

B.3 Constraints

At the jth collocation point, we apply the kinematic and dynamic con-
straints of motion, as described in Section 4.1.

Contact Constraint

R(✓
hj

)


c
hxj

c
hyj

�
�R(✓

bj

)


c
bxj

c
byj

�
�


p
bxj

p
byj

�
= 0 (64)

Tangency Constraint

✓
hj

+\R
✓
⇡

2

◆
c0
hxj

c0
hyj

�
�✓

bi

�\R
✓
⇡

2

◆
c0
bxj

c0
byj

�
+(2k

j

+1)⇡ = 0

(65)

Here, k
j

is the integer used to deal with the fact that the original tan-
gency constraint is true mod 2⇡. It is chosen at each constraint evalua-
tion to minimize the constraint error.

Rolling Constraint

s0
hj

r⇣
c0
hxj

⌘2
+

⇣
c0
hyj

⌘2
+ s0

bj

r⇣
c0
bxj

⌘2
+

⇣
c0
byj

⌘2
= 0 (66)

Inertia Constraint
✓
R(✓

bj

)


c
bxj

c
byj

�◆
⇥m

✓
p00
bxj

p00
byj

�
+


0

g

�◆
� I✓00

bj

= 0 (67)

Friction Cone Constraint

0

BB@

✓
µR

✓
⇡

2

◆
±


1 0

0 1

�◆
[c0

hxj

, c0
hyj

]

T

r⇣
c0
hxj

⌘2
+

⇣
c0
hyj

⌘2

1

CCA · fhj � 0 (68)

where:

fhj = R(�✓
hj

)m

✓
p00
bxj

p00
byj

�
+


0

g

�◆
(69)

Task Constraints
To constrain the ball to move along a specific path, we use the

constraint:

G(p
bxj

, p
byj

) = 0 (70)

If we want to control both the spatial path, and the speed of the ball as
it travels, we instead fix the decision variables for the position of the
ball and the length of the trajectory:

[p̄
bxi

, p̄
byi

] =[f
px

(i), f
py

(i)] (71)
⌫ =C (72)

We can fix the motion of the hand using the constraints:

¯✓
hi

=f
✓

(i) (73)
⌫ =C (74)

If instead we’d like to fix the shape of the hand, we use the constraint:

[c̄
hxi

, c̄
hyi

] =[f
cx

(i), f
cy

(i)] (75)
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